HEATLOK® HFO PRO SPRAY-APPLIED POLYURETHANE FOAM PLASTIC INSULATION

CSI Section: 07 21 00 Thermal Insulation

1.0 RECOGNITION

Heatlok® HFO Pro spray-applied polyurethane foam plastic insulation has been evaluated for use as spray foam insulation complying with IBC Section 2603, IRC Section R316, and 2021, 2018, 2015, and 2012 IECC Section C303, C402, R303, and R402 and 2009 IECC Sections 303, 402 and 502. The physical properties, water vapor resistance, air permeance, thermal resistance, surface burning characteristics, fire-resistance, and attic and crawl space installations, and exterior walls of Types I-IV construction were evaluated to comply with the intent of the following codes and regulations:

2.0 LIMITATIONS

Use of Heatlok® HFO Pro spray-applied polyurethane foam plastic insulation recognized in this report is subject to the following limitations:

2.1 The insulation and coating products shall be installed in accordance with the manufacturer’s published installation instructions, this evaluation report and the applicable code. If there are any conflicts between the manufacturer’s published installation instructions and this report, the more restrictive shall govern.

2.2 Except as permitted by the applicable building code, the insulation shall be separated from the interior of the building by a code-complying thermal barrier or shall be installed as an alternative thermal barrier assembly in accordance with Section 4.5.1 of this report

2.3 The insulation shall not exceed the nominal density and thickness for the installation conditions described in this report.

2.4 During application, the insulation shall be protected from exposure to weather.

2.5 The insulation shall be installed by professional spray polyurethane foam installers authorized by Huntsman Building Solutions, Inc.

2.6 Use of the insulation in areas of “very heavy” termite infestation probability shall be in accordance with 2021, 2018, 2015 and 2009 IBC Section 2603.8 and 2012 IBC Section 2603.9 or IRC Section R318.4, as applicable.

2.7 Heatlok® HFO PRO insulation qualifies as a vapor retarder when installed as required in Section 4.7 of this report.

2.8 Labeling and jobsite certification of the insulations and coatings shall comply with the following code sections as applicable:

- 2021, 2018, 2015 or 2012 IBC Section 2603.2
- 2021, 2018, 2015 or 2012 IRC Section R316.2
- 2021, 2018, 2015 IRC Section N1101.10.1.1
- 2012 IRC Section N1101.12.1.1
- 2009 IRC Section N1101.4
- 2021, 2018, 2015, or 2012 IECC Section C303.1.1.1 or R303.1.1.1
- 2009 IECC Section 303.1.1.1

2.9 The insulation shall be produced by Huntsman Building Solutions, Inc. in Arlington, TX.

3.0 PRODUCT USE

Heatlok® HFO Pro spray-applied polyurethane foam plastic insulation complies with IBC Section 2603, IRC Section R316 and 2021, 2018, 2015 and 2012 IECC Sections C303, C402, R303, and R402 and 2009 IECC Sections 303, 402 and 502. When installed in accordance with Section 4.0 of this report, the foam plastic insulation is for use in wall cavities, floor assemblies or ceiling assemblies, exterior side of vertical foundations or the underside of slabs. It may be used in attics and crawl spaces when installed with Section 4.5.1. Heatlok® HFO Pro insulation is used in Types I, II, III, IV and V construction under the IBC and in one-and two-family dwellings under the IRC.

4.0 PRODUCT DESCRIPTION

4.1 Properties: Heatlok® HFO Pro is a medium density, closed cell, spray-applied polyurethane foam plastic insulation in accordance with Table 1 of AC377. The insulation has a nominal in-place density of 2.0 lb/ft³ (32 kg/m³). The two-component spray foam plastic is produced in the field by combining a polymeric isocyanate
(A component) and the Heatlok® HFO Pro resin (B component). The liquid components shall be stored in 55-gallon (208 L) drums at temperatures between 50°F and 100°F (10°C and 38°C) for the polymeric isocyanate and 59°F and 77°F (15°C and 25°C) for the Heatlok® HFO Pro resin. When Component A and Component B are stored in factory-sealed containers at the recommended temperatures, the maximum shelf life is twelve months for the polymeric isocyanate and six months for the Heatlok® HFO Pro resin.

4.2 Thermal Resistance (R-Values): Heatlok® HFO Pro spray-applied polyurethane foam plastic insulation has a thermal resistance (R-Value) at a mean temperature of 75°F (24°C) as shown in Table 1 of this report.

<table>
<thead>
<tr>
<th>Thickness (inch)</th>
<th>Heatlok® HFO Pro R-Value (°F-ft²-h/Btu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.4</td>
</tr>
<tr>
<td>1.5</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>3.5</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>5.5</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>46</td>
</tr>
<tr>
<td>7.5</td>
<td>49</td>
</tr>
<tr>
<td>8</td>
<td>53</td>
</tr>
<tr>
<td>9</td>
<td>59</td>
</tr>
<tr>
<td>10</td>
<td>66</td>
</tr>
<tr>
<td>11</td>
<td>72</td>
</tr>
<tr>
<td>11.5</td>
<td>76</td>
</tr>
<tr>
<td>12</td>
<td>79</td>
</tr>
</tbody>
</table>

For Sf: 1 inch = 25.4 mm, 1°F·ft²·h/Btu = 0.176 110 K·m²/W.

4.3 Surface Burning Characteristics: At a maximum thickness of 4 inches (102 mm) and a nominal density of 2.0 lb/ft³ (32 kg/m³), the Heatlok® HFO Pro insulation has a flame spread index of 25 or less and smoke-developed index of 450 or less when tested in accordance with ASTM E84. Greater thicknesses, depending on the end use, are recognized when installed in accordance with this report.

4.4 Fire-Protective Coatings and Coverings: Fire protective coatings, for use as alternative thermal barrier assemblies, shall be in accordance with Table 2 of this report, as applicable, and installed in accordance with Section 4.5 of this report.

4.5 Installations: Heatlok® HFO Pro spray-applied polyurethane foam plastic insulation shall comply with one of the following requirements:

- 2021, 2018, 2015, and 2012 2009 IECC Section C402.1
- 2021, 2018, 2015, and 2012 IECC Section R402.1
- 2009 IECC Section 402.1

The manufacturer’s published installation instructions for Heatlok® HFO Pro insulation and this report shall be available on the jobsite during installation. Where conflicts occur, the most restrictive governs.

Heatlok® HFO Pro insulation shall be spray-applied on the jobsite using equipment specified in the manufacturer’s published installation instructions. The maximum in-service temperature for all areas shall not exceed the maximum temperature stated in the manufacturer’s published installation instructions. The insulation shall be sprayed onto a clean, dry substrate that has been prepared in accordance with the manufacturer’s installation instructions. The insulation shall not be used in electrical outlets or junction boxes or where the insulation will be in direct, continuous contact with water.

4.5.1 Thermal Barrier

4.5.1.1 Application with an Approved Thermal Barrier: Except as provided for in Section 4.5.1.2 of this report, Heatlok® HFO Pro spray-applied polyurethane foam plastic insulation shall be separated from the interior by a thermal barrier in accordance with IBC Section 2603.4 or IRC Section R316 as applicable. When the insulation is separated from the interior by a prescriptive thermal barrier in accordance with IBC Section 2603.4 or IRC Section R316, the insulation thickness shall not be limited.

4.5.1.2 Alternative Thermal Barrier Assemblies: Heatlok® HFO Pro spray-applied polyurethane foam plastic insulation may be installed without a thermal barrier as defined in Section 4.5.1.1 of this report when installed in accordance with Table 2 of this report and as referenced in IAPMO UES ER-499 or additional report by an approved evaluation entity to the requirements of AC456.

4.5.2 Installation in Attics or Crawl Spaces: Heatlok® HFO Pro spray-applied polyurethane foam plastic insulation may be installed in attics or crawl spaces when installed in accordance with this section (Section 4.5).

When installed in attics or crawl spaces where entry is made only for the service of utilities, Heatlok® HFO Pro insulation may be installed in accordance with this section. Heatlok® HFO Pro insulation need not be surfaced with a thermal barrier, however, such attic and crawl space areas shall be separated from the interior of the building by a thermal barrier in accordance with Section 4.5.2 of this report.

4.5.2.1 Installation Using a Prescriptive Ignition Barrier: When installed within attics or crawl spaces where entry is made only for the service of utilities, Heatlok® HFO Pro spray-applied polyurethane foam plastic insulation at a maximum thickness of 7.5 inches (191 mm) on walls and
other vertical surfaces and 11.5 inches (292 mm) on ceilings and other overhead surfaces shall be covered with a prescriptive ignition barrier in accordance with IBC Section 2603.4.1.6 or IRC Sections R316.5.3 and R316.5.4, as applicable.

Exception: The prescriptive ignition barrier may be omitted when installed in accordance with Section 4.5.2.2 of this report.

4.5.2.2 Installation Using an Alternative Ignition Barrier Assembly: Heatlok® HFO Pro spray-applied polyurethane foam plastic insulation may be installed in attics and crawl spaces using an alternative ignition barrier assembly provided:

a. Entry is only to service utilities in the attic or crawl space and no storage is permitted.
b. Attic or crawl space areas cannot be interconnected.
c. Air from the attic or crawl space cannot be circulated to other parts of the building.
d. Attic ventilation is provided as required by 2021 and 2018 IBC Section 1202.2, 2015 and 2012 IBC Section 1203.2 or IRC Section R806 except where air-impermeable insulation is permitted in unvented attics and shall comply with the following code sections as applicable:

For Unvented Attics:
- 2021 and 2018 IBC Section 1202.3
- 2015 IBC Section 1203.3
- 2021 and 2018, 2015, 2012 and 2009 IRC Section R806.5

Crawl space ventilation is provided as required by the following code sections as applicable:
- 2021 and 2018 IBC Section 1202.4
- 2015 IBC Section 1203.4
- 2012 and 2009 IRC Section 1203.3
- 2018, 2015, 2012 and 2009 IRC Section R408.1

e. The foam plastic insulation is limited to the maximum thickness and density tested as shown in Section 4.5.2.2.1 of this report.
f. In accordance with IMC (International Mechanical Code®) Section 701, combustion air is provided.

4.5.2.2.1 Alternative Ignition Barrier Assembly: Heatlok® HFO Pro spray-applied polyurethane foam plastic insulation may be installed without a prescriptive ignition barrier on walls, floors, ceilings and other vertical and horizontal surfaces as defined in Section 4.5.2.1 of this report when limited to a maximum thickness of 7.5 inches (191 mm) on walls and other vertical surfaces and 11.5 inches (292 mm) on ceilings and other overhead surfaces.

4.6 Air Permeability: When tested in accordance with ASTM E2178 at a minimum thickness of 1 inch (25.4 mm), Heatlok® HFO Pro spray foam insulation is classified as air-impermeable insulation in accordance with Section 1202.3 of the 2021 and 2018 IBC, Section 1203.3 of the 2015 IBC, and Section R806.5 of the 2021, 2018, 2015 and 2012 IRC or Section R806.4 of the 2009 IRC, as applicable.

4.7 Vapor Permeance: Heatlok® HFO Pro spray-applied polyurethane foam plastic insulation, when tested in accordance with the ASTM E96 desiccant method (Procedure A), has a permeance of less than 1.0 perms (57.4 x 10^-9 g/Pa·s·m), at a minimum thickness of 1 inch (25 mm) and qualifies as a Class II vapor retarder in accordance with IBC Section 202 and IRC Section R202.

4.8 One-hour Fire-resistance Rated Assembly: The following load-bearing assembly based on testing to ASTM E119 provides a one-hour fire-resistance rating.

Framing: 3/8-inch (92 mm) 20-gauge steel studs with a maximum height of 10 feet (3 m) spaced at 16 inches (406 mm) on center inserted in a 20-gauge top and bottom steel track with lateral bracing at mid-wall height.

Exterior Surface: Two layers of 5/8-inch-thick (15.9 mm) glass mat gypsum substrate complying with ASTM C1177. The base layer is installed with the long edge parallel to the studs with #6 by 1 1/2-inch-long (38 mm) drywall screws spaced at 8 inches (203 mm) on center around the perimeter and 12 inches (305 mm) on center in the field. The face layer is installed with the long edge parallel to the studs with the base layer and face layer joints staggered by one stud space. The face wall is secured with #6 by 1/8-inch-long (48 mm) drywall screws spaced at 8 inches (203 mm) on center around the perimeter and 12 inches (305 mm) on center in the field.

Insulation: 3/8-inch-thick (92 mm) layer of Heatlok® HFO Pro spray-applied polyurethane foam plastic insulation applied in the cavities to the exterior gypsum completely filling the stud cavities.

Interior Cladding: Two layers of 5/8-inch-thick (15.9 mm) Type X gypsum board complying with ASTM C1396. The base layer shall be installed with the long edge parallel to the studs with #6 by 1 1/2-inch-long (38 mm) drywall screws spaced at 8 inches (203 mm) on center around the perimeter and 12 inches (305 mm) on center in the field. The face layer shall be installed with the long edge parallel to the studs with the base layer and face layer joints staggered by one stud space. The face wall is secured with #6 by 1/8-inch-long (48 mm) drywall screws spaced at 8 inches (203 mm) on center around the perimeter and 12 inches (305 mm) on center in the field.

4.9 Exterior Walls of Buildings of Type I, II, III or IV Construction: When Heatlok® HFO Pro spray-applied polyurethane foam plastic insulation is used in exterior walls of buildings of Type I, II, III or IV construction of any height, the insulation shall comply with IBC Section 2603.5 and this section. Heatlok HFO Pro insulation shall be installed at a maximum thickness of 3/8 inches (92 mm).
4.9.1 Complying Exterior Wall Assemblies: Wall assemblies that comply with Section 2603.5.5 of the IBC and this report that may be used in exterior walls of buildings of Type I, II, III or IV construction of any height are described in Tables 3 and 4 of this report.

5.0 IDENTIFICATION

The spray foam insulation is identified with the following:

a. Manufacturer’s name (Huntsman Building Solutions), Inc.
b. manufacturer’s address and telephone number,
c. the product trade name (Heatlok® HFO Pro)
d. use instructions
e. density, flame-spread and smoke-development indices
f. date of manufacture or batch/run number
g. thermal resistance values
h. the evaluation report number (ER-565)
i. the name or logo of the inspection agency

Either Mark of Conformity may also be used as shown below:

IAPMO UES ER-565

6.0 SUBSTANTIATING DATA

6.1 Data in accordance with the ICC-ES Acceptance Criteria for Spray-applied Foam Plastic Insulation, AC377, dated April 2020 (editorially revised July 2020) including Appendix X.

6.3 Report of air permeance testing in accordance with ASTM E2178.

6.4 Report of water vapor transmission performance in accordance with ASTM E96.

6.5 Fire-resistance testing to ASTM E119.

6.6 Report of fire-propagation characteristics tests in accordance with NFPA 285.

6.7 Third party engineering analysis for extension of NFPA 285 results.

6.9 Data in accordance with 2019 ICC 1100 Standard for Spray-applied Polyurethane Foam Plastic Insulation.

6.10 Test reports are from laboratories in compliance with ISO/IEC 17025.

7.0 STATEMENT OF RECOGNITION

This evaluation report describes the results of research completed by IAPMO Uniform Evaluation Service on Heatlok® HFO Pro to assess conformance to the codes and standards shown in Section 1.0 of this report and documents the product’s certification. The product is manufactured at location noted in Section 2.9 of this report under a quality control program with periodic inspections under the supervision of IAPMO UES.

For additional information about this evaluation report please visit www.uniform-es.org or email at info@uniform-es.org
TABLE 2 - ALTERNATIVE THERMAL BARRIER ASSEMBLY

<table>
<thead>
<tr>
<th>FIRE-PROTECTIVE COATING/COVERING</th>
<th>MAXIMUM SPF THICKNESS (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>MINIMUM THICKNESS</td>
</tr>
<tr>
<td>DC315</td>
<td>18 mils WFT (12 mils DFT)</td>
</tr>
<tr>
<td>Blazelok TBX</td>
<td>18 mils WFT (12 mils DFT)</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 gallon = 3.785 L, 1 ft² = 0.0929 m²

1 Fire-protective coatings and coverings shall be applied over all exposed SPF surfaces in accordance with the coating/covering manufacturer’s instructions and this report.

2 International Fireproof Technology, Inc, recognized in IAPMO UES ER-499.

3 ICP Construction, recognized in ICC-ES ESR-3997

TABLE 3 – NFPA 285 COMPLYING EXTERIOR WALL ASSEMBLIES WITH HEATLOK® HFO PRO IN WALL CAVITY

<table>
<thead>
<tr>
<th>Wall Component</th>
<th>Materials</th>
</tr>
</thead>
</table>
| Base Wall System (BWS)- Use either 1, 2, or 3 | 1. Concrete Wall.
2. Concrete Masonry Wall.
3. 1 layer of 5/8-inch-thick Type X gypsum wallboard installed on the interior side of minimum 3 1/8-inch deep, minimum 25-gauge equivalent thick steel studs spaced a maximum of 24 inches on center. Lateral bracing installed minimum every 4 foot vertically or as required. |
| Perimeter Fire Barrier System Use 1 and 2 | 1. Perimeter fire barrier system complying with Section 715.4 of the IBC shall be installed, as applicable, to fill the void between the edge of the concrete floor slab and the interior surface of the exterior wall assembly.
2. 4 pcf mineral wool in each stud cavity at each floor line, attached with Z-clips or friction fit. |
| Interior Insulation – Use either 1, 2, 3, 4 or 5 or combinations of 3 with 4 or 3 with 5. | 1. None
2. Maximum of 3 1/8-inch thickness of Heatlok® HFO Pro applied to interior surface of BWS 1 and 2
3. Full wall stud cavity depth or less of Heatlok® HFO Pro applied using exterior gypsum sheathing of BWS 3 as the substrate and covering the width of the cavity and the inside of the steel wall stud framing flange.
4. Fiberglass batt insulation (faced or unfaced).
5. Mineral wool insulation (faced or unfaced). |
| Exterior Sheathing | 3/8-inch-thick exterior type gypsum sheathing (for BWS 3 above). |
| Exterior wall covering | 1. Any non-combustible exterior wall covering material using any standard installation technique.
2. Any non-combustible exterior wall covering system with a combustible water-resistant barrier (WRB) that has successfully been tested in accordance with NFPA 285.
3. Any combustible exterior wall covering system with or without a combustible WRB that has successfully been tested in accordance with NFPA 285.
4. Table 4 below – Exterior Insulation 2 only with Claddings 6, 7 and 8 per Table 4 of this report (SPF as Exterior Insulation). Read notes carefully.
5. Table 4 below – Exterior Insulation 3 (with coating) only with Cladding 9 thru 18 per Table 4 of this report (SPF as Exterior Insulation). Read notes carefully. |
| Flashing of window, door and other exterior wall penetrations | As an option, flash around window, door and other exterior wall penetrations with limited amounts of maximum 12-inch-wide flashing tape (acrylic, asphalt or butyl based) or liquid applied membrane material with or without fiber mesh reinforcement. |
| Window Perimeter | The window header, jambs and sill are covered with 0.080-inch aluminum flashing. The edges and top of the assembly were sealed with steel flashing. Windows and Doors shall be framed as required for the base wall. |

For SI: 1 inch = 25.4 mm; 1 lb/ft³=16 kg/m³

1 Fireblocking per Section 718 of the 2021, 2018, 2015 and 2012 IBC and Section 717 of the 2009 IBC and thermal barrier material requirements must be met for BWS 1 and 2, as required by specific wall construction details when combustible concealed space is created on the exterior side of the exterior wall assembly.

2 Combustible exterior wall coverings shall be installed in accordance with manufacturer’s installation requirements.
TABLE 4 – NFPA 285 COMPLYING EXTERIOR WALL ASSEMBLIES WITH HEATLOK® HFO INSTALLED ON THE EXTERIOR SIDE OF THE WALL ASSEMBLY

<table>
<thead>
<tr>
<th>Wall Component</th>
<th>Materials</th>
</tr>
</thead>
</table>
| Base Wall System (BWS)- Use either 1, 2, or 3 | 1. Concrete Wall.
2. Concrete Masonry Wall.
3. 1 layer of 7/8-inch-thick Type X gypsum wallboard installed on the interior side of minimum 3 1/2-inch thickness of Heatlok® HFO Pro (with Claddings 1-5, 2-inch maximum air gap between cladding and SPF).
Fiberglass batt insulation (faced or unfaced) - Lateral bracing installed minimum every 4 foot vertically or as required. |
| Perimeter Fire Barrier System Use 1 or 2. | 1. Perimeter fire barrier system complying with Section 715.4 of the IBC shall be installed, as applicable, to fill the void between the edge of the concrete floor slab and the interior surface of the exterior wall assembly.
2. Wall stud cavities shall be filled at each floor line with minimum 4 lb/ft³ mineral wool friction fit between steel wall studs, attached with Z-clips or friction fit. |
| Interior Insulation – Use either 1, 2, 3, 4 or 5 or combinations of 3 with 4 or 3 with 5. | 1. None
2. Full wall stud cavity depth or less of Heatlok® HFO Pro applied using exterior gypsum sheathing of BWS 3 as the substrate and covering the width of the cavity and the inside of the steel wall stud framing flange.
3. Fiberglass batt insulation (faced or unfaced)
4. Mineral wool insulation (faced or unfaced) |
| Exterior Sheathing – use either 1 or 2 | 1. None (for BWS 1 or 2 above)
2. 7/8-inch thick Type X exterior type gypsum sheathing (for BWS 3 above) |
| Exterior Insulation Use 1, 2 or 3 | 1. Maximum 3 1/2-inch thickness of Heatlok® HFO Pro (with Claddings 1-5, 2-inch maximum air gap between cladding and SPF).
2. Maximum 3-inch HeatLok HFO Pro SPF (with Claddings 6, 7 and 8. Horizontal purlin every 2 feet maximum, no vertical Z girts. Purlin depth 1-inch deeper than SPF thickness. 1-inch maximum air gap between cladding and SPF.
3. Maximum 3 1/2-inch HeatLok HFO Pro SPF (with Claddings 9-18, use coating – 18 mils WFT DC315 with nine mils WFT Sherwin Williams Sher-Cryl HPA Topcoat with horizontal Z Girts 28 inches on center. 2-inch maximum air gap between cladding and SPF. |
| Exterior wall covering – use any item 1-20 with specific insulation or coating – read carefully. | For use with Exterior Insulation 1
1. Brick – Standard type brick veneer anchors, installed a maximum of 24 inches on center, vertically on each stud with maximum 1-inch air gap between exterior insulation and brick. Brick to be standard nominal 4-inch thick clay brick installed in a running bond pattern using Type S mortar.
2. Stucco – Minimum 7/8-inch thick, exterior plaster and lath. A secondary water resistive barrier (WRB) can be installed between the exterior insulation and lath. The secondary WRB shall not be full coverage asphalt or butyl based self-adsorbed membranes.
3. Minimum 2-inch thick natural stone (granite, limestone, marble or sandstone) Any standard non-open joint installation technique shall be used.
4. Minimum 1 1/2-inch thick concrete masonry unit (CMU), precast concrete or artificial cast stone. Any standard non-open jointed method shall be used.
5. Minimum 1 1/2-inch thick terra cotta non-open jointed. Any standard non-open jointed installation technique shall be used. |
| 1-inch maximum air gap between cladding and SPF for cladding 6, 7 and 8 and insulation 2. | For use with Exterior Insulation 2
6. Vertical or horizontal flat 20 gauge minimum steel (or zinc galvanized steel) panels directly attached to horizontal purlin. Non-open joint.
7. STK 1000, STK 1500 Force Five, STK 2000, STK 2500 Force Five, STK 5000 or STK 5500 Force Five panels or equivalent. Non-open joint.
8. Vertical or horizontal corrugated 20 gauge minimum steel (or galvanized steel) panels (2-inch maximum corrugation depth) directly attached to horizontal purlin with no air gap (between cladding and SPF) at the shallowest depth of corrugation profile. Non-open joint. |
| 2-inch maximum air gap with cladding 1-5 or claddings 9 through 18. | For use with Exterior Insulation 3
9. Aluminum cladding – 3 mm minimum thickness, open or non-open joint.
10. Steel cladding - 0.0149-inch minimum thickness, open or non-open joint.
11. Copper cladding – 0.0216-inch minimum thickness, open or non-open joint.
12. Zinc cladding – 4 mm minimum thickness, open or non-open joint.
13. 1/8-inch minimum fiber cement cladding, open or non-open joint.
14. Concrete – minimum 1-inch thick, open or non-open joint. |

(continued on next page)
15. Concrete Masonry Units – minimum 1-inch thick open or non-open joint
16. Stone Veneer – minimum 1-inch thick, open or non-open joint.
17. One Coat Stucco – 3/8-inch minimum exterior cement plaster and lath, non-open joint.
18. Thin Brick adhered (with noncombustible mortar) to stucco base (minimum ¾-inch) non-open joint.

Flashing of window, door and other exterior wall penetrations	As an option, flash around window, door and other exterior wall penetrations with limited amounts of maximum 12-inch wide flashing tape (acrylic, asphalt or butyl based) or liquid applied membrane material with or without fiber mesh reinforcement.
Window Perimeter	Materials for Openings Perimeters
	For Exterior Insulations 1 or 2 with no coating over the foam, use 18 gauge minimum sheet steel perimeter flashing. Windows and doors shall be framed as required for the base wall.
	For Exterior Insulation 3 with the coating over the foam, use 26 gauge minimum aluminum perimeter flashing. Windows and doors shall be framed as required for the base wall.

For SI: 1 inch = 25.4 mm; 1 lb/ft³ = 16 kg/m³

\(^1\)Fireblocking per Section 718 of the 2021, 2018, 2015 and 2012 IBC and Section 717 of the 2009 IBC and thermal barrier material requirements must be met for BWS 1 and 2, as required by specific wall construction details when combustible concealed space is created on the interior side of the exterior wall assembly.