Number: 277

Originally Issued: 06/10/2016

Revised: 06/02/2023

Valid Through: 06/30/2024

BAILEY METAL PRODUCTS LIMITED 1 Caldari Road Concord, ON L4K 3Z9 CANADA (905) 738-9267 www.bmp-group.com

COMSLAB FLOOR SYSTEM

CSI Sections: 05 00 00 Metals 05 31 00 Steel Decking 05 31 13 Steel Floor Decking

1.0 RECOGNITION

The ComSlab Floor System has been evaluated as floor deck in compliance with IBC Section 2210.1.1. The floor system has been evaluated for composition and structural performance. The ComSlab Floor System evaluated in this report complies with or is a satisfactory alternative to the following codes and regulations:

- 2018, 2015, and 2012 International Building Code[®] (IBC)
- 2018, 2015, and 2012 International Residential Code[®] (IRC)
- 2019 California Building Code (CBC) Title 24 Part 2 attached supplement
- 2020 Florida Building Code, Building (FBC, Building) -attached supplement
- 2014 New York City Building Code (NYCBC) attached supplement
- 2019 Chicago Building Code (Title 14B) attached supplement

2.0 LIMITATIONS

Use of the ComSlab Floor System recognized in this report is subject to the following:

2.1 The CS210 and CS120 ComSlab deck systems are manufactured, identified, and installed in accordance with this report, the IBC, and ComSlab's published installation instructions. If there is a conflict between manufacturers' published installation instructions and this report, the more restrictive shall take precedence.

2.2 Concrete-filled sections shall not be used to support loads that are predominantly vibratory except where vibration effects are considered in the structural analyses.

2.3 Use as part of the lateral force-resisting system is beyond the scope of this report.

2.4 Penetrations in the floor system shall be determined by the structural designer and approved by the building official.

2.5 Special inspections shall be provided in accordance with Section 3.4 of this report.

2.6 Calculations and details demonstrating that the loads applied to the decks comply with this report shall be submitted to the building official for approval. Calculations and drawings shall be prepared, signed, and sealed by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.

2.7 Bundles marked in accordance with Section 5.0 of this report provide the material traceability required to conform to the requirements of Section 2202.1 of the 2018 IBC (Section 2203.1 of the 2015 and 2012 IBC) and, for applications under the 2012 IBC, Table 1705.2.2, Item 1 of the 2012 IBC.

3.0 PRODUCT USE

3.1 General: The ComSlab Floor System provides an inplace steel forming system and is used in conjunction with structural concrete topping and reinforcing bars as floors to support the code-required floor loads.

3.2 Design

3.2.1 General: Design for deck-only capacities shall comply with IBC Section 2210 and AISI S100. Section Properties and design base-metal thicknesses are provided in Tables 1, 2, 3, and 4 of this report. The system may also be used where an engineering design is submitted in accordance with Section R301.1.3 of the IRC.

3.2.2 Web Crippling: The ComSlab deck panels shall bear a minimum of 2 inches onto the support structure and a minimum of 4 inches at shoring supports unless a registered professional engineer designs adequate support to prevent web crippling from occurring. Tables 1, 2, 3, and 4 of this report are based on this support condition.

3.2.3 Vertical Loads: The composite deck, concrete fill, and concrete reinforcing resist out-of-plane vertical load and resistance factor design (LRFD) superimposed design live loads as specified in Tables 1, 2, 3, and 4 of this report. The tabulated loads have been reduced by the Load Factor of 1.6. All LRFD superimposed load (dead, live, wind, earthquake, etc.) combinations shall be determined by the structural designer in accordance with IBC Section 1605.2. The results shall be less than the corresponding tabulated design live load.

The product described in this Uniform Evaluation Service (UES) Report has been evaluated as an alternative material, design or method of construction in order to satisfy and comply with the intent of the provision of the code, as noted in this report, and for at least equivalence to that prescribed in the code in quality, strength, effectiveness, fire resistance, durability and safety, as applicable, in accordance with IBC Section 104.11. This document shall only be reproduced in its entirety.

Copyright © 2023 by International Association of Plumbing and Mechanical Officials. All rights reserved. Printed in the United States. Ph: 1-877-4IESRPT • Fax: 909.472.4171 web: www.uniform-es.org • 4755 East Philadelphia Street, Ontario, California 91761-2816 – USA

Originally Issued: 06/10/2016

Revised: 06/02/2023

Valid Through: 06/30/2024

EXAMPLE:

Steel deck CS120 - Design thickness = 0.0375 in.; yield stress = 50 ksi Reinforcing steel - Bar number = 8; yield stress = 60 ksi Concrete - Normal weight = 145 lb/ft³ Overall slab depth = 10.5 in. Single span length = 24.0 ft

<u>Applied Loads</u>

$= 8.5 \mathrm{psf}$
= <u>14.5 psf</u>
L = 23.0 psf

Live load LL = 100 psf

 $\frac{Total \ applied \ load}{100} = \{1.2/1.6(DL) + LL\} = \{0.75(23.0) + 100\} = \frac{117 \ psf}{100}$

From the appropriate table on page 19 of this report, the maximum total load is $\underline{138 psf}$

When the load span exceeds the maximum unshored span in the tables, shoring shall be provided. The shoring shall be designed by the structural designer and shown at specified locations on the construction documents. Shoring removal shall comply with ACI 318-14 Section 26.11.2 or ACI 318-11 Section 6.2. Out-of-plane loads may include upward and downward vertical seismic effects, upward and downward loads due to wind, and downward loads due to transient effects and gravity. The deflections due to the dead weight of the concrete slab shall be determined in accordance with Eq.-1:

$$\Delta_{sw} = \frac{SWDP \times L^4}{10^6}$$
 Eq.-1

Where:

 $\Delta sw =$ deflection due to slab weight, in. SWDP = slab weight deflection parameter from load table. L = load span, ft.

The maximum superimposed unfactored load that causes the concrete-filled deck to deflect to a specified limit shall be determined in accordance with Eq.-2:

$$w_{d} = \frac{SLDP \times 10^{6}}{DC \times (L)^{3}}$$
 Eq.-2

Where:

EXAMPLE:

Base steel thickness - 0.0375 in. Bar number - 9 Slab depth - 10.5 in. Span length, L, - 24 feet From the table on page 20, SLDP = 778 Assume DC = 360

Using Eq.-2:

$$w_{d} = \frac{778 \times 10^{6}}{360 \times (24)^{3}} = \frac{156 \, psf}{1000}$$

For confirmation of values, the appropriate load tables shall be reviewed.

3.2.4 Support Connections: The connection of the deck and end closure to the structure shall be with welds, poweractuated fasteners, or self-drilling screws complying with Section 4.6 of this report and as designed and specified by the registered design professional based on requirements in ANSI/SDI NC. A minimum of one fastener per deck panel is required at each support. Fastener spacing shall be 24 inches on center maximum for supports parallel to the panels. Other fasteners suitable for the deck and supporting member shall be designed and specified by the registered design professional and approved by the building official.

3.3 Installation

3.3.1 Deck Panels: The deck panels shall be fastened to the structural supports with fasteners described in Sections 3.2.4 and 4.6 of this report. The ends of the deck shall bear a minimum of 2 inches onto the support structure. Supports shall be structural steel complying with IBC Chapter 22 and AISC 360; structural concrete complying with IBC Chapter 19 and ACI 318; or structural masonry complying with IBC Chapter 21 and TMS 402. The End Closure shall be fixed to the support structure prior to the decking being installed, using a minimum of one fastener per deck unit. In addition to the main structural fastening, the profile top flanges are fixed to the upper flange of the End Closure using poweractuated or self-drilling fasteners at one per profile. Fasteners shall be driven such that there is tight contact between the fastener head and the attached panels. The male trough flange shall overlap the female trough flange. The fasteners used to connect the side-laps of the panels to each other shall be minimum No. 14 1/4-14x1 self-drilling screws spaced 13.8 inches on center maximum. Every side-lap fastener shall include a ComSlab pre-punched side-lap washer.

3.3.2 Reinforcing: The reinforcing bars shall be placed in each rib profile, with a 1.57-inch clear space between the bottom flange and the underside of the bars. Shrinkage and temperature reinforcement shall be provided above the top of the deck for both directions in accordance with ACI 318-14 Section 24.4 or ACI 318-11 Section 7.12.

Revised: 06/02/2023

Valid Through: 06/30/2024

3.3.3 Concrete: Concrete placement shall comply with applicable provisions of the IBC and ACI 318. Before concrete placement, steel decking shall be clean and free of dirt, grease, and other debris. Shoring shall be in place before concrete placement at the locations as specified in the tables of this report. The bearing width for the shoring supports shall be 4 inches minimum. Care shall be taken to avoid heaping of concrete in any location. Tables 1, 2, 3, and 4 of this report include construction live loads of 20 psf or 150 plf.

3.4 Special Inspection

3.4.1 Concrete: Continuous and periodic special inspection for concrete and concrete reinforcement shall be in accordance with IBC Section 1705.3. The inspector's duties include sampling and testing, and verification of concrete mixes, reinforcement types and placement, concrete placement, observing sampling of concrete, field testing of fresh concrete, and the making of test specimens.

3.4.2 Steel Deck: Periodic special inspection for steel deck shall be in accordance with IBC Section 1705.2.2. The inspector's duties include verifying that the steel deck panels are of the type, size, grade, and condition specified on the approved plans and specifications and verifying the correct type, size, and location of fasteners, fastener holes, and installation for the type of connection are as specified on approved plans and specifications.

3.4.3 Statement of Special Inspections: A statement of special inspections shall be prepared by the registered design professional in charge and submitted to the building official as set forth in IBC Section 1704.3. The statement shall include the special inspector's duties noted in this section (Section 3.4 of this report).

4.0 PRODUCT DESCRIPTION

4.1 General: The ComSlab Floor System consists of coldformed steel deck panels and end closures, concrete, reinforcing bars, welded wire reinforcement, and mechanical fasteners. The system complies with ANSI/SDI-NC.

4.2 ComSlab Deck Panels: The ComSlab deck panels are cold-formed from steel sheets into panels that resemble a fluted, flared, hat section with embossments in the webs and flange. The deck panels are available in three design thicknesses, 0.0375 inch, 0.0435 inch, and 0.0495 inch. The ends of the deck are provided with a separate end closure to provide additional web crippling strength and a permanent deck end closure to minimize grout loss during concrete placement. Steel sheets complying with ASTM A653 SS Grade 55 are cold-formed into deck shapes and closure elements having a minimum G90 galvanization coating (total on both surfaces). Panel dimensions and profiles are shown in the tables and figures of this report.

4.3 Concrete Fill: The deck panels are designed to be used with sand-lightweight or normal-weight concrete complying

with IBC Sections 1901 and 1904 and having a minimum 28day compressive strength of 4,000 psi and proportioned in accordance with ACI 318. Normal-weight structural concrete [w = 145 to 150 pcf] shall have aggregate conforming to ASTM C33. Sand lightweight structural concrete [w = 110 to115 pcf] shall have fine aggregate conforming to ASTM C33 and coarse aggregate conforming to ASTM C330. The concrete shall extend a minimum of 2.5 inches above the top surface of the steel deck panel and shall be reinforced with a single reinforcing bar in the bottom of each flute.

4.4 Reinforcing Bars: The reinforcing bars (rebar) shall comply with ASTM A615, A706, or A996, minimum Grade 60, and range in size from No. 3 to No. 11 ($\frac{3}{8}$ inch to $1-\frac{3}{8}$ inch diameter).

4.5 Shrinkage and Temperature Control Reinforcement: The reinforcing in the top of the concrete is required for shrinkage and temperature control and shall be with a minimum area of 0.00075 times the area of concrete above the deck, and not less than $6 \times 6 \text{ W1.4 x W1.4}$ steel welded wire plain reinforcement complying with ASTM A1064, placed above the top of the steel deck and positioned towards the top of the slab with a minimum ³/₄ inch cover. In place of steel welded wire, fibers may be substituted. The fibers shall be specifically recognized for use in concrete-filled steel decks by an evaluation report issued by an approved evaluation service agency.

4.6 Fasteners: The fasteners used to connect the side-laps of the panels to each other and the end closures to the structure and the deck shall be self-drilling screws complying with Section J4 of AISI S100 (Section E4 of AISI S100 for the 2015 and 2012 IBC) or an evaluation report issued by an approved evaluation service agency. The fasteners used to connect the deck panels to the supporting structure shall be welds, self-drilling screws, or power-actuated fasteners complying with Sections J2, J4, or J5, respectively, of AISI S100 (Sections E2, E4, or E5, respectively, of AISI S100 for the 2015 and 2012 IBC); or an evaluation report issued by an approved evaluation service agency. The capacity of the screws and power-actuated fasteners to the supporting material (steel, concrete, or masonry) shall be documented in an evaluation report issued by an approved evaluation service agency.

4.7 Accessories: End Closures are fabricated using G90 galvanized steel sheet, 0.060 inch in thickness. Side-lap Washers are fabricated using G60 galvanized steel sheet, 0.048 inch in thickness.

5.0 IDENTIFICATION

Each bundle of decking is marked with labels with the Bailey Metal Products Limited name, the deck type, the minimum base-metal thickness (uncoated), the minimum specified yield strength, and the Evaluation Report number ER-277.

Originally Issued: 06/10/2016

B

Revised: 06/02/2023

Valid Through: 06/30/2024

Either IAPMO UES Mark of Conformity may also be used as shown below:

6.0 SUBSTANTIATING DATA

6.1 Manufacturer's descriptive literature and installation instructions.

6.2 Test reports from laboratories in compliance with ISO/IEC 17025.

6.3 Data in accordance with IAPMO UES EC 007-2020, Evaluation Criteria for Steel Composite, Non-Composite, and Roof Deck Construction.

6.4 Quality Assurance Documentation.

7.0 STATEMENT OF RECOGNITION

This evaluation report describes the results of research completed by IAPMO Uniform Evaluation Service on the ComSlab Floor System to assess its conformance to the codes shown in Section 1.0 of this report and documents the product's certification.

For additional information about this evaluation report please visit www.uniform-es.org or email us at info@uniform-es.org

Originally Issued: 06/10/2016

Revised: 06/02/2023

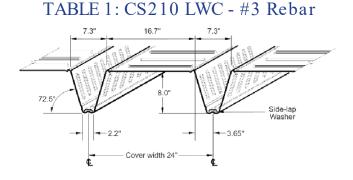

Valid Through: 06/30/2024

TABLE 1: CS210 LWO	C - #3 REBA	٨R					II	IPERIA	UNITS
Base Steel Thickness =	0.0375″					А	rea of St	eel Deck	Included
# 3 Rebar						Light W	eight Cor	ncrete = 1	10 lb/ft ³
SLAB WEIGHT (psf)		40.2	44.8	49.3	53.9	58.5	63.1	67.7	72.3
CONCRETE VOLUME (ye	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	13.6	13.0	12.5	12.1	11.7	11.3	11.0	10.6
MAX. UNSHORED TWO	SPAN (ft)	11.0	10.2	9.5	8.9	8.3	7.8	7.4	7.0
MAX. UNSHORED THRE	E SPAN (ft)	12.5	11.6	10.8	10.1	9.5	8.9	8.4	8.0
l _u (in ⁴)		47.2	54.0	61.2	69.0	77.5	86.6	97	108
l _e (in ⁴)		18.6	20.7	22.9	25.3	27.9	30.6	33.4	36.4
DEFLECTION PARAMET	ER (SLDP)	518	588	662	742	829	922	1023	1132
DEFLECTION PARAMET	ER (SWDP)	0.649	0.632	0.615	0.596	0.576	0.555	0.534	0.513
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)	MAXIMUM NOMINAL LOAD (psf)							
	14.0	184	195	206	216	227	238	249	259
To be established by the designer.	14.5	170	179	189	199	209	218	228	238
the designer.	15.0	157	166	174	183	192	201	210	219
	15.5	145	153	161	169	177	185	193	202
	16.0	134	141	149	156	164	171	178	186
	16.5	124	131	138	144	151	158	165	171
	17.0	115	121	128	134	140	146	152	158
	17.5	107	113	118	124	130	135	141	146
	18.0	100	105	110	115	120	125	130	135
	18.5	93	97	102	107	111	116	121	125
	19.0	86	91	95	99	103	107	112	116
	19.5	80	84	88	92	96	100	104	107
	20.0	75	78	82	85	89	92	96	99
	20.5	70	73	76	79	83	86	89	92
	21.0	65	68	71	74	77	79	82	85
	21.5	61	63	66	68	71	74	76	79
	22.0	57	59	61	64	66	68	70	73
	22.5	53	55	57	59	61	63	65	67
	23.0	49	51	53	55	57	58	60	62
	23.5	46	48	49	51	52	54	55	57
	24.0	43	44	46	47	48	50	51	52
	24.5		41	42	43	45	46	47	48
	25.0				40	41	42	43	44

TABLE 1: CS210 LWO Base Steel Thickness =		AR						/IPERIAI	
	0.0495"								
# 3 Rebar		41.0	45.6	50.1	54.7	59.3	-	ce r	· ·
SLAB WEIGHT (psf)	240003						63.9	68.5	73.1
CONCRETE VOLUME (y		1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	. /	18.7	18.0	17.3	16.8	16.3	15.8	15.4	15.0
MAX. UNSHORED TWO		18.6	17.2 19.6	16.0 18.2	15.0	14.1 16.0	13.3 15.1	12.6	11.9
MAX. UNSHORED THRE	E SPAN (π)	21.1 49.2	56.2	63.7	17.0 71.8	80.6	90.1	14.3 101	13.6 112
l_ (in ⁴)									
I (in ⁴)	FD (01 DD)	21.9	24.5	27.2	30.2	33.4	36.8	40.4	44.2
DEFLECTION PARAMET		559	635	716	803	897	998	1108	1226
DEFLECTION PARAMET	0.635	0.618	0.600	0.581	0.561	0.541	0.520		
SLAB THICKNESS (in.) SHORING	CDAN (P)	10.5	11.0	11.5	12.0		13.0	13.5	14.0
SHOKING	SPAN (ft)	241	257		UM NON 289			220	254
To be established by	14.0	241 223	257 237	273 252	289	306 282	322 297	338	354
the designer.	14.5							312	326
	15.0	206	220	233	247	260	274	288	301
	15.5	191	203	216	229	241	254	266	279
	16.0	177	189	200	212	224	235	247	258
	16.5	165	176	186	197	208	218	229	240
	17.0	154	163	173	183	193	203	213	
	17.5	143	152	161	170	180	189	198	207
	18.0	134	142	150	159	167	176	184	193
	18.5	125	133	140	148	156	164	172	179
	19.0	117	124	131	138	146	153	160	167
	19.5	109	116	123	129	136	143	149	156
	20.0	102	109	115	121	127	133	139	146
	20.5	96	102	107	113	119	124	130	136
	21.0	90	95	101	106	111	116	122	127
	21.5	84	89	94	99	104	109	114	119
	22.0	79	84	88	93	97	102	106	111
	22.5	74	79	83	87	91	95	99	104
	23.0	70	74	78	81	85	89	93	97
	23.5	66	69	73	76	80	83	87	90
	24.0	62	65	68	71	75	78	81	84
	24.5	58	61	64	67	70	73	76	79
	25.0	54	57	60	63	65	68	71	73

TABLE 1: CS210 LW		AN						IPERIA	
Base Steel Thickness =	0.0435"							eel Deck	
# 3 Rebar		_		1			-	ncrete = 1	
SLAB WEIGHT (psf)		40.6	45.2	49.7	54.3	58.9	63.5	68.1	72.7
CONCRETE VOLUME (y		1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	. ,	16.5	15.9	15.3	14.8	14.3	13.8	13.4	13.0
MAX. UNSHORED TWO		14.6	13.5	12.6	11.7	11.0	10.4	9.8	9.3
MAX. UNSHORED THRE	EE SPAN (ft)	16.5	15.3	14.3	13.3	12.5	11.8	11.2	10.6
l _u (in ⁴)		48.1	55.1	62.4	70.4	79.0	88.3	99	110
l _e (in ⁴)		20.2	22.6	25.1	27.8	30.6	33.7	36.9	40.3
DEFLECTION PARAMET	ER (SLDP)	538 0.643	611	688	772	862	960	1065	1179
DEFLECTION PARAMET	DEFLECTION PARAMETER (SWDP)		0.625	0.608	0.589	0.569	0.548	0.527	0.50
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIM	INAL LO	AD (psf)			
	14.0	213	227	240	253	267	280	294	307
To be established by the designer.	14.5	197	209	221	234	246	258	271	283
ne designer.	15.0	182	193	204	216	227	238	249	261
	15.5	168	179	189	199	210	220	230	241
	16.0	156	165	175	185	194	204	213	223
	16.5	145	154	162	171	180	189	197	206
	17.0	135	143	151	159	167	175	183	191
	17.5	125	133	140	148	155	162	170	177
	18.0	117	124	130	137	144	151	158	164
	18.5	109	115	122	128	134	140	147	153
	19.0	102	108	113	119	125	131	136	142
	19.5	95	100	106	111	116	121	127	132
	20.0	89	94	99	103	108	113	118	123
	20.5	83	88	92	96	101	105	110	114
	21.0	78	82	86	90	94	98	102	106
	21.5	73	77	80	84	88	91	95	99
	22.0	68	72	75	78	82	85	89	92
	22.5	64	67	70	73	76	79	83	86
	23.0	60	63	65	68	71	74	77	80
	23.5	56	59	61	64	66	69	71	74
	24.0	52	55	57	59	62	64	66	69
	24.5	49	51	53	55	57	60	62	64
	25.0	46	48	50	52	53	55	57	59

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. Iu is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Originally Issued: 06/10/2016

Revised: 06/02/2023

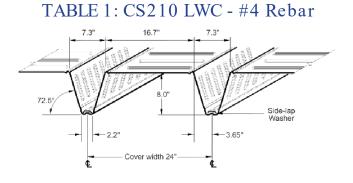

Valid Through: 06/30/2024

TABLE 1: CS210 LWO	C - #4 REBA	٨R					11	MPERIA	L UNITS
Base Steel Thickness =	0.0375″					P	rea of St	eel Deck	Included
#4 Rebar						Light W	eight Co	ncrete = 1	10 lb/ft ³
SLAB WEIGHT (psf)		40.3	44.9	49.5	54.1	58.7	63.2	67.8	72.4
CONCRETE VOLUME (ye	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE		13.6	13.0	12.5	12.1	11.6	11.3	10.9	10.6
MAX. UNSHORED TWO	SPAN (ft)	11.0	10.2	9.5	8.9	8.3	7.8	7.4	7.0
MAX. UNSHORED THRE	E SPAN (ft)	12.5	11.6	10.8	10.1	9.4	8.9	8.4	8.0
l _a (in ⁴)		48.3	55.2	62.6	70.6	79.2	88.6	99	110
l, (in4)		20.4	22.8	25.3	27.9	30.8	33.8	37.0	40.3
DEFLECTION PARAMET	ER (SLDP)	540	614	692	775	865	963	1067	1181
DEFLECTION PARAMET	ER (SWDP)	0.637	0.620	0.603	0.584	0.565	0.545	0.524	0.503
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)				UM NON				
To be established by	14.0	225	238	251	264	277	290	304	317
the designer.	14.5	207	219	231	243	255	268	280	292
uie designet.	15.0	192	203	214	225	236	247	258	269
	15.5	178	188	198	208	218	228	238	248
	16.0	165	174	183	193	202	211	221	230
	16.5	153	162	170	179	187	196	204	213
	17.0	143	150	158	166	174	182	190	197
	17.5	133	140	147	154	162	169	176	183
	18.0	124	130	137	144	150	157	164	170
	18.5	116	122	128	134	140	146	152	158
	19.0	108	114	119	125	130	136	142	147
	19.5	101	106	111	116	122	127	132	137
	20.0	95	99	104	109	113	118	123	128
	20.5	89	93	97	102	106	110	114	119
	21.0	83	87	91	95	99	103	107	111
	21.5	78	81	85	89	92	96	99	103
	22.0	73	76	80	83	86	89	93	96
	22.5	68	71	74	77	80	83	86	89
	23.0	64	67	70	72	75	78	80	83
	23.5	60	63	65	68	70	72	75	77
	24.0	56	59	61	63	65	68	70	72
	24.5	53	55	57	59	61	63	65	67
	25.0	50	51	53	55	57	59	60	62
	25.5	47	48	50	51	53	54	56	58
	26.0	44	45	46	48	49	51	52	53
	26.5	41	42	43	44	46	47	48	49
	27.0			40	41	42	43	44	45
	27.5						40	41	42
	28.0								

TABLE 1: CS210 LW		\R						MPERIA	LUNITS
Base Steel Thickness =	0.0495"					ļ	Area of St	eel Deck	Included
# 4 Rebar						Light W	eight Co	ncrete = 1	10 lb/ft
SLAB WEIGHT (psf)		41.1	45.7	50.3	54.9	59.4	64.0	68.6	73.2
CONCRETE VOLUME (y	d³/100ft²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	18.7	18.0	17.3	16.8	16.2	15.8	15.3	14.9
MAX. UNSHORED TWO) SPAN (ft)	18.5	17.2	16.0	15.0	14.1	13.3	12.6	11.9
MAX. UNSHORED THR	ee Span (ft)	21.1	19.5	18.2	17.0	16.0	15.1	14.3	13.5
l_ (in ⁴)		50.2	57.4	65.1	73.4	82.3	92.0	103	114
l (in⁴)		23.6	26.4	29.4	32.6	36.1	39.8	43.7	47.9
DEFLECTION PARAMET	ER (SLDP)	581	659	744	834	932	1037	1150	1273
DEFLECTION PARAMET	ER (SWDP)	0.625	0.607	0.589	0.570	0.551	0.531	0.510	0.490
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SHORING SPAN (ft) MAXIMUM NOM								
T. I	14.0	281	299	318	336	355	374	392	411
To be established by	14.5	259	277	294	311	328	345	362	379
the designer.	15.0	240	256	272	288	304	319	335	351
	15.5	223	238	252	267	281	296	311	325
	16.0	208	221	234	248	261	275	288	302
	16.5	193	206	218	231	243	256	268	280
	17.0	180	192	203	215	226	238	249	261
	17.5	168	179	190	200	211	222	233	243
	18.0	158	167	177	187	197	207	217	227
	18.5	147	157	166	175	184	193	203	212
	19.0	138	147	155	164	172	181	189	198
	19.5	130	138	146	153	161	169	177	185
	20.0	122	129	136	144	151	159	166	173
	20.5	114	121	128	135	142	149	155	162
	21.0	108	114	120	127	133	139	146	152
	21.5	101	107	113	119	125	131	137	143
	22.0	95	101	106	112	117	123	128	134
	22.5	90	95	100	105	110	115	120	125
	23.0	85	89	94	99	103	108	113	118
	23.5	80	84	88	93	97	102	106	110
	24.0	75	79	83	87	91	95	100	104
	24.5	71	75	78	82	86	90	93	97
	25.0	67	70	74	77	81	84	88	91
	25.5	63	66	69	73	76	79	82	86
	26.0	59	62	65	68	71	74	77	80
	26.5	56	59	62	64	67	70	72	75
	27.0	53	55	58	60	63	65	68	70
	27.5	50	52	54	57	59	61	64	66
	28.0	47	49	51	53	55	57	59	62

TABLE 1: CS210 LW	C - #4 REBA	\R						MPERIA	L UNITS
Base Steel Thickness =	0.0435"					1	Area of St	eel Deck	Include
# 4 Rebar						Light W	eight Co	ncrete = 1	10 lb/ft
SLAB WEIGHT (psf)		40.7	45.3	49.9	54.5	59.0	63.6	68.2	72.8
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	16.5	15.9	15.3	14.8	14.3	13.8	13.4	13.0
MAX. UNSHORED TWO	SPAN (ft)	14.5	13.5	12.5	11.7	11.0	10.4	9.8	9.3
MAX. UNSHORED THRE	EE SPAN (ft)	16.5	15.3	14.2	13.3	12.5	11.8	11.2	10.6
l_ (in4)		49.2	56.3	63.8	71.9	80.7	90.2	101	112
l (in ⁴)		22.0	24.6	27.3	30.3	33.4	36.8	40.4	44.1
DEFLECTION PARAMET	ER (SLDP)	560	636	717	804	898	999	1109	1227
DEFLECTION PARAMET	ER (SWDP)	0.631	0.614	0.596	0.577	0.558	0.538	0.517	0.497
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIM	IUM NON	INAL LO	AD (psf)		
	14.0	253	269	285	301	317	333	349	365
To be established by	14.5	234	248	263	278	292	307	322	336
the designer.	15.0	216	230	243	257	270	284	297	311
	15.5	201	213	225	238	250	263	275	287
	16.0	187	198	209	221	232	244	255	266
	16.5	174	184	195	205	216	226	237	247
	17.0	162	171	181	191	201	210	220	230
	17.5	151	160	169	178	187	196	205	214
	18.0	141	149	158	166	174	182	191	199
	18.5	132	139	147	155	162	170	178	185
	19.0	123	130	138	145	152	159	166	173
	19.5	116	122	129	135	142	148	155	161
	20.0	108	114	120	127	133	139	145	151
	20.5	102	107	113	118	124	130	135	141
	21.0	95	101	106	111	116	121	127	132
	21.5	90	94	99	104	109	114	118	123
	22.0	84	89	93	98	102	106	111	115
	22.5	79	83	87	91	95	100	104	108
	23.0	74	78	82	86	89	93	97	101
	23.5	70	74	77	80	84	87	91	94
	24.0	66	69	72	75	79	82	85	88
	24.5	62	65	68	71	74	76	79	82
	25.0	58	61	64	66	69	72	74	77
	25.5	55	57	60	62	65	67	69	72
	26.0	52	54	56	58	60	63	65	67
	26.5	49	51	53	55	56	58	60	62
	27.0	46	47	49	51	53	55	56	58
	27.5	43	45	46	48	49	51	52	54
	28.0	40	42	43	45	46	47	49	50

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. I_u is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Number: 277

Originally Issued: 06/10/2016

UES

Revised: 06/02/2023


Valid Through: 06/30/2024

TABLE 1: CS210 LWC - #5 REBAR IMPERIAL UNITS									
Base Steel Thickness =	0.0375″					β	rea of St	eel Deck	Included
# 5 Rebar						Light W	eight Co	ncrete = 1	10 lb/ft ³
SLAB WEIGHT (psf)		40.5	45.1	49.7	54.3	58.8	63.4	68.0	72.6
CONCRETE VOLUME (ye	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	14.1	13.5	12.9	12.4	12.0	11.6	11.3	11.0
MAX. UNSHORED TWO	SPAN (ft)	11.0	10.1	9.4	8.8	8.3	7.8	7.4	7.0
MAX. UNSHORED THRE	E SPAN (ft)	12.5	11.5	10.7	10.0	9.4	8.9	8.4	8.0
l_ (in ⁴)		49.5	56.7	64.3	72.5	81.4	90.9	101	113
l _e (in ⁴)		22.6	25.3	28.1	31.1	34.3	37.7	41.3	45.1
DEFLECTION PARAMET	568	645	727	815	910	1012	1122	1241	
DEFLECTION PARAMET	ER (SWDP)	0.624	0.607	0.589	0.571	0.552	0.532	0.512	0.492
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)					INAL LO			
	14.0	285	302	319	336	353	370	387	404
To be established by the designer.	14.5	263	279	294	310	326	341	357	373
the designer.	15.0	244	258	273	287	301	316	330	345
	15.5	227	240	253	266	280	293	306	319
	16.0	211	223	235	247	260	272	284	296
	16.5	196	208	219	230	241	253	264	275
	17.0	183	194	204	215	225	235	246	256
	17.5	171	181	190	200	210	219	229	239
	18.0	160	169	178	187	196	205	214	223
	18.5	150	158	167	175	183	191	200	208
	19.0	141	148	156	164	171	179	187	194
	19.5	132	139	146	153	160	167	175	182
	20.0	124	131	137	144	150	157	163	170
	20.5	117	123	129	135	141	147	153	159
	21.0	110	115	121	127	132	138	143	149
	21.5	103	108	114	119	124	129	135	140
	22.0	97	102	107	112	117	121	126	131
	22.5	92	96	101	105	109	114	118	123
	23.0	86	90	95	99	103	107	111	115
	23.5	81	85	89	93	97	100	104	108
	24.0	77	80	84	87	91	94	98	101
	24.5	72	76	79	82	85	89	92	95
	25.0	68	71	74	77	80	83	86	89
	25.5	65	67	70	73	75	78	81	84
	26.0	61	63	66	68	71	73	76	78
	26.5	58	60	62	64	67	69	71	73
	27.0	54	56	58	60	63	65	67	69
	27.5	51	53	55	57	59	61	62	64
	28.0	48	50	52	53	55	57	58	60

TABLE 1: CS210 LW		AR .					11	MPERIA	L UNITS
Base Steel Thickness =	0.0495"					1	Area of St	eel Deck	Include
# 5 Rebar						Light W	eight Co	ncrete = 1	10 lb/ft
SLAB WEIGHT (psf)		41.3	45.9	50.5	55.1	59.6	64.2	68.8	73.4
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	19.1	18.5	17.8	17.2	16.7	16.2	15.8	15.4
MAX. UNSHORED TWO) SPAN (ft)	18.5	17.1	16.0	14.9	14.0	13.2	12.5	11.9
MAX. UNSHORED THRE	ee span (ft)	21.0	19.5	18.1	17.0	16.0	15.1	14.2	13.5
l_ (in4)		51.4	58.9	66.8	75.3	84.4	94.3	105	117
l (in⁴)		25.7	28.8	32.1	35.6	39.4	43.5	47.8	52.3
DEFLECTION PARAMET	ER (SLDP)	607	689	778	872	974	1084	1203	1330
DEFLECTION PARAMET	ER (SWDP)	0.613	0.595	0.577	0.558	0.539	0.519	0.499	0.479
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING SPAN (ft) MAXIMUM NON							AD (psf)		_
	14.0	343	366	389	411	434	457	480	502
To be established by	14.5	318	339	360	381	402	423	444	465
the designer.	15.0	295	314	334	353	372	392	411	431
-	15.5	274	292	310	328	346	364	382	400
	16.0	255	272	289	305	322	338	355	372
	16.5	238	254	269	285	300	315	331	346
	17.0	223	237	251	266	280	294	309	323
	17.5	208	222	235	248	262	275	288	302
	18.0	195	208	220	233	245	257	270	282
	18.5	183	195	206	218	229	241	253	264
	19.0	172	183	194	204	215	226	237	248
	19.5	162	172	182	192	202	212	222	232
	20.0	152	162	171	181	190	199	209	218
	20.5	143	152	161	170	179	187	196	205
	21.0	135	143	152	160	168	176	184	193
	21.5	128	135	143	151	158	166	174	181
	22.0	121	128	135	142	149	156	164	171
	22.5	114	121	127	134	141	147	154	161
	23.0	108	114	120	126	133	139	145	151
	23.5	102	108	113	119	125	131	137	143
	24.0	96	102	107	113	118	124	129	135
	24.5	91	96	101	107	112	117	122	127
	25.0	86	91	96	101	105	110	115	120
	25.5	82	86	91	95	100	104	109	113
	26.0	77	82	86	90	94	98	102	107
	26.5	73	77	81	85	89	93	97	101
	27.0	70	73	77	80	84	88	91	95
	27.5	66	69	73	76	79	83	86	89
	28.0	63	66	69	72	75	78	81	84

TABLE 1: CS210 LW		\R						MPERIA	
Base Steel Thickness =	0.0435"					1	Area of St	eel Deck	Include
# 5 Rebar						Light W	eight Co	ncrete = 1	10 lb/ft
SLAB WEIGHT (psf)		40.9	45.5	50.1	54.7	59.2	63.8	68.4	73.0
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	16.9	16.3	15.7	15.2	14.7	14.2	13.8	13.4
MAX. UNSHORED TWO	SPAN (ft)	14.5	13.4	12.5	11.7	11.0	10.4	9.8	9.3
MAX. UNSHORED THRE	E SPAN (ft)	16.5	15.3	14.2	13.3	12.5	11.8	11.1	10.6
l_ (in ⁴)		50.4	57.7	65.5	73.8	82.8	92.6	103	115
l, (in⁴)		24.1	27.0	30.1	33.4	36.9	40.6	44.6	48.7
DEFLECTION PARAMET	ER (SLDP)	587	666	752	843	942	1048	1162	1285
DEFLECTION PARAMET	ER (SWDP)	0.619	0.601	0.583	0.565	0.545	0.526	0.506	0.486
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIM	UM NON	INAL LO	AD (psf)		
	14.0	314	334	354	374	394	414	434	454
To be established by	14.5	291	309	328	346	364	383	401	419
the designer.	15.0	270	287	304	321	337	354	371	388
	15.5	251	266	282	298	313	329	344	360
	16.0	233	248	262	277	291	306	320	335
	16.5	218	231	244	258	271	285	298	311
	17.0	203	216	228	240	253	265	278	290
	17.5	190	202	213	225	236	248	259	271
	18.0	178	189	199	210	221	231	242	253
	18.5	167	177	187	197	207	217	227	236
	19.0	157	166	175	184	194	203	212	221
	19.5	147	156	164	173	182	190	199	207
	20.0	138	146	154	162	170	178	186	194
	20.5	130	138	145	153	160	168	175	182
	21.0	123	130	137	143	150	157	164	171
	21.5	116	122	129	135	141	148	154	161
	22.0	109	115	121	127	133	139	145	151
	22.5	103	108	114	120	125	131	137	142
	23.0	97	102	108	113	118	123	128	134
	23.5	92	97	101	106	111	116	121	126
	24.0	87	91	96	100	105	109	114	118
	24.5	82	86	90	95	99	103	107	111
	25.0	77	81	85	89	93	97	101	105
	25.5	73	77	81	84	88	91	95	99
	26.0	69	73	76	79	83	86	89	93
	26.5	66	69	72	75	78	81	84	87
	27.0	62	65	68	71	73	76	79	82
	27.5	59	61	64	67	69	72	74	77
	28.0	56	58	60	63	65	68	70	72

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. Iu is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Originally Issued: 06/10/2016

UES

Revised: 06/02/2023

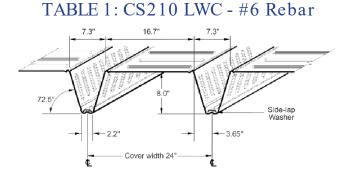

Valid Through: 06/30/2024

TABLE 1: CS210 LWC - #6 REBAR IMPERIAL UNIT									
Base Steel Thickness =	0.0375"							eel Deck	
#6 Rebar						Light W	/eight Co	ncrete = 1	10 lb/ft3
SLAB WEIGHT (psf)		40.7	45.3	49.9	54.5	59.1	63.7	68.2	72.8
CONCRETE VOLUME (y		1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE		14.0	13.4	12.9	12.4	12.0	11.6	11.3	11.0
MAX. UNSHORED TWO		10.9	10.1	9.4	8.8	8.3	7.8	7.4	7.0
MAX. UNSHORED THRE	EE SPAN (ft)	12.4	11.5	10.7	10.0	9.4	8.9	8.4	8.0
l _u (in ⁴)		51.0	58.4	66.3	74.7	83.9	93.7	104	116
l _e (in ⁴)		25.1	28.1	31.3	34.7	38.4	42.2	46.3	50.6
DEFLECTION PARAMET		599	681	768	861	962	1069	1185	1310
DEFLECTION PARAMET	ER (SWDP)	0.610	0.592	0.574	0.556	0.537	0.518	0.499	0.479
SLAB THICKNESS (in.)	00000000	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)	0.45	266					470	101
To be established by	14.0	345	366	387	408	429	449	470	491
the designer.	14.5 15.0	320 297	339	358 332	377	397	416 385	435	454
uie designet.			314		350	368		403	421
	15.5	276 257	292	309	325	342	358 333	374 348	391
	16.0 16.5	257	272 254	287 268	303 282	318 296	333	348	363 338
	16.5	240	234	200	262	296	289	303	316
	17.5	210	222	230	203	258	289	283	295
	17.5	197	208	219	240	238	253	263	235
	18.5	185	195	215	231	242	233	247	258
	19.0	173	183	193	203	212	222	232	242
	19.5	163	172	181	190	199	209	218	227
	20.0	154	162	170	179	187	196	204	213
	20.5	145	153	160	168	176	184	192	200
	21.0	136	144	151	159	166	173	181	188
	21.5	129	136	142	149	156	163	170	177
	22.0	122	128	134	141	147	154	160	166
	22.5	115	121	127	133	139	145	151	157
	23.0	109	114	120	125	131	136	142	148
	23.5	103	108	113	118	124	129	134	139
	24.0	97	102	107	112	117	121	126	131
	24.5	92	97	101	106	110	115	119	124
	25.0	87	91	96	100	104	108	112	117
	25.5	83	87	90	94	98	102	106	110
	26.0	78	82	86	89	93	96	100	104
	26.5	74	78	81	84	88	91	94	98
	27.0	70	74	77	80	83	86	89	92
	27.5	67	70	73	75	78	81	84	87
	28.0	63	66	69	71	74	77	79	82
	28.5	60	63	65	67	70	72	75	77
	29.0	57	59	61	64	66	68	70	73
	29.5	54	56	58	60	62	64	66	68
	30.0	51	53	55	57	59	61	62	64

TABLE 1: CS210 LW		<u>AR</u>						MPERIA	
Base Steel Thickness =	0.0495"							eel Deck	
# 6 Rebar						Light W	eight Co	ncrete = 1	10 lb/ft
SLAB WEIGHT (psf)		41.5	46.1	50.7	55.3	59.9	64.4	69.0	73.6
CONCRETE VOLUME (y	/d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	19.0	18.4	17.8	17.2	16.7	16.2	15.8	15.4
MAX. UNSHORED TWO) SPAN (ft)	18.4	17.1	15.9	14.9	14.0	13.2	12.5	11.9
MAX. UNSHORED THR	EE SPAN (ft)	21.0	19.4	18.1	16.9	15.9	15.0	14.2	13.5
l_ (in ⁴)		52.8	60.5	68.7	77.4	86.9	97.0	108	120
l (in4)		28.0	31.4	35.1	39.1	43.3	47.7	52.5	57.5
DEFLECTION PARAMET	TER (SLDP)	636	723	817	916	1024	1139	1263	1397
DEFLECTION PARAMET	TER (SWDP)	0.600	0.581	0.563	0.545	0.526	0.507	0.487	0.468
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING									
	14.0	402	429	456	482	509	536	562	589
To be established by	14.5	373	398	422	447	471	496	521	545
the designer.	15.0	347	369	392	415	438	460	483	506
	15.5	323	344	365	386	407	428	449	470
	16.0	301	320	340	360	379	399	418	438
	16.5	281	299	317	336	354	372	390	408
-	17.0	263	280	297	314	331	348	365	382
	17.5	246	262	278	294	310	325	341	357
	18.0	231	246	261	275	290	305	320	334
	18.5	217	231	245	259	272	286	300	314
	19.0	204	217	230	243	256	269	282	294
	19.5	192	204	216	229	241	253	265	277
	20.0	181	193	204	215	227	238	249	260
	20.5	171	182	192	203	213	224	235	245
	21.0	162	171	181	191	201	211	221	231
	21.5	153	162	171	181	190	199	209	218
	22.0	144	153	162	171	179	188	197	206
	22.5	137	145	153	161	170	178	186	194
	23.0	130	137	145	153	160	168	176	183
	23.5	123	130	137	144	152	159	166	173
	24.0	116	123	130	137	144	150	157	164
	24.5	110	117	123	130	136	142	149	155
	25.0	105	111	117	123	129	135	141	147
	25.5	100	105	111	116	122	128	133	139
	26.0	95	100	105	110	116	121	126	132
	26.5	90	95	100	105	110	115	120	125
	27.0	85	90	95	99	104	109	113	118
	27.5	81	86	90	94	99	103	107	112
	28.0	77	81	85	89	94	98	102	106
	28.5	73	77	81	85	89	93	96	100
	29.0	70	73	77	81	84	88	91	95
	29.5	67	70	73	77	80	83	87	90
	30.0	63	66	70	73	76	79	82	85

TABLE 1: CS210 LW	C - #6 REBA	١R					I	MPERIA	L UNITS
Base Steel Thickness :	= 0.0435″					1	Area of St	eel Deck	Included
# 6 Rebar						Light W	/eight Co	ncrete = 1	10 lb/ft ³
SLAB WEIGHT (psf)		41.1	45.7	50.3	54.9	59.5	64.1	68.6	73.2
CONCRETE VOLUME {	/d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	E SPAN (ft)	16.9	16.3	15.7	15.2	14.7	14.2	13.8	13.4
MAX. UNSHORED TWO	D SPAN (ft)	14.5	13.4	12.5	11.7	11.0	10.3	9.8	9.3
MAX. UNSHORED THR	EE SPAN (ft)	16.4	15.2	14.2	13.3	12.5	11.8	11.1	10.6
l _u (in ⁴)		51.9	59.4	67.4	76.0	85.3	95.3	106	118
ļ (in4)		26.6	29.8	33.2	36.9	40.8	45.0	49.4	54.1
DEFLECTION PARAME	TER (SLDP)	617	701	792	888	992	1104	1224	1353
DEFLECTION PARAME	TER (SWDP)	0.605	0.587	0.569	0.550	0.532	0.512	0.493	0.474
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)				UM NON	/INAL LO	AD (psf)		
	14.0	374	398	422	446	469	493	517	541
To be established by	14.5	347	369	391	413	435	457	479	500
the designer.	15.0	322	342	363	383	403	423	444	464
	15.5	300	318	337	356	375	394	412	431
	16.0	279	297	314	332	349	366	384	401
	16.5	261	277	293	309	325	342	358	374
	17.0	244	259	274	289	304	319	334	349
	17.5	228	242	256	270	284	298	312	326
	18.0	214	227	240	253	266	279	292	305
	18.5	201	213	225	238	250	262	274	286
	19.0	189	200	212	223	234	246	257	269
	19.5	178	189	199	210	220	231	242	252
	20.0	168	178	187	197	207	217	227	237
	20.5	158	167	177	186	195	204	214	223
	21.0	149	158	167	175	184	193	201	210
	21.5	141	149	157	165	173	181	190	198
	22.0	133	141	148	156	164	171	179	186
	22.5	126	133	140	147	154	162	169	176
	23.0	119	126	133	139	146	153	159	166
	23.5	113	119	125	132	138	144	150	157
	24.0	107	113	119	124	130	136	142	148
	24.5	101	107	112	118	123	129	134	140
	25.0	96	101	106	111	117	122	127	132
	25.5	91	96	101	106	110	115	120	125
	26.0	87	91	96	100	104	109	113	118
	26.5	82	86	91	95	99	103	107	111
	27.0	78	82	86	90	94	97	101	105
	27.5	74	78	81	85	89	92	96	99
	28.0	70	74	77	81	84	87	91	94
	28.5	67	70	73	76	79	83	86	89
	29.0	64	66	69	72	75	78	81	84
	29.5	60	63	66	68	71	74	77	79
	30.0	57	60	62	65	67	70	72	75

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. Iu is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Number: 277

Originally Issued: 06/10/2016

UES

)/2016 Revise

Revised: 06/02/2023

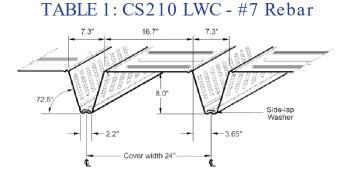

Valid Through: 06/30/2024

TABLE 1: CS210 LWC - #7 REBAR IMPERIAL UNITS									
Base Steel Thickness =	0.0375"					1	Area of St	eel Deck	Included
# 7 Rebar						Light W	Veight Co	ncrete = 1	10 lb/ft ³
SLAB WEIGHT (psf)		41.0	45.6	50.2	54.8	59.3	63.9	68.5	73.1
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	14.0	13.4	12.9	12.4	12.0	11.6	11.3	11.0
MAX. UNSHORED TWO	SPAN (ft)	10.9	10.1	9.4	8.8	8.3	7.8	7.4	7.0
MAX. UNSHORED THRE	EE SPAN (ft)	12.4	11.5	10.7	10.0	9.4	8.8	8.4	7.9
I_ (in ⁴)		52.6	60.3	68.5	77.2	86.7	96.8	108	120
l (in ⁴)		27.9	31.2	34.9	38.7	42.9	47.2	51.8	56.7
DEFLECTION PARAMET		633	720	813	912	1019	1133	1256 0.485	1388
DEFLECTION PARAMET	ER (SWDP)	0.595	0.577	0.559	0.541	0.522	0.466		
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	14.0		
SHORING	SPAN (ft)			MAXIN	IOM NON	INAL LO	AD (psf)		
	16.0	310	329	348	366	385	404	422	441
To be established by	16.5	290	307	325	342	359	377	394	412
the designer.	17.0	271	288	304	320	336	352	368	385
	17.5	254	269	285	300	315	330	345	360
	18.0	239	253	267	281	295	309	323	337
	18.5	224	238	251	264	277	290	303	316
	19.0	211	223	236	248	260	272	285	297
	19.5	199	210	222	233	245	256	268	279
	20.0	188	198	209	220	230	241	252	263
	20.5	177	187	197	207	217	227	237	247
	21.0	167	177	186	195	205	214	224	233
	21.5	158	167	176	185	193	202	211	220
	22.0	150	158	166	174	183	191	199	208
	22.5	142	150	157	165	173	180	188	196
	23.0	134	142	149	156	163	171	178	185
	23.5	127	134	141	148	155	161	168	175
	24.0	121	127	134	140	146	153	159	166
	24.5	115	121	127	133	139	145	151	157
	25.0	109	115	120	126	131	137	143	148
	25.5	104	109	114	119	125	130	135	140
	26.0	98	103	108	113	118	123	128	133
	26.5	94	98	103	107	112	117	121	126
	27.0	89	93	98	102	106	111	115	119
	27.5	84.d	89	93	97	101	105	109	113
	28.0	80.d	84	88	92	96	100	103	107
	28.5	76.d	80	84	87	91	94	98	101
	29.0	72.d	76	80	83	86	90	93	96
	29.5	68.d	73	76	79	82	85	88	91
	30.0	65.d	69	72	75	78	81	83	86
	30.5	62.d	66	68	71	74	76	79	82
	31.0	59.d	63	65	67	70	72	75	77
	31.5	56.d	60	62	64	66	69	71	73
	32.0	54.d	57	59	61	63	65	67	69
	32.5	51.d	54	56	58	60	62	63	65
	33.0	49.d	51	53	55	56	58	60	62

TABLE 1: CS210 LW		AR						MPERIA	
Base Steel Thickness =	0.0495"							eel Deck	
# 7 Rebar						Light W	leight Co	ncrete = 1	10 lb/ft ⁴
SLAB WEIGHT (psf)		41.8	46.4	51.0	55.6	60.1	64.7	69.3	73.9
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	19.0	18.4	17.8	17.2	16.7	16.2	15.7	15.3
MAX. UNSHORED TWO) SPAN (ft)	18.4	17.0	15.9	14.9	14.0	13.2	12.5	11.8
MAX. UNSHORED THR	EE SPAN (ft)	20.9	19.4	18.0	16.9	15.9	15.0	14.2	13.5
l_ (in⁴)		54.4	62.4	70.8	79.9	89.6	100.1	111	124
l, (in4)		30.6	34.4	38.5	42.8	47.5	52.5	57.7	63.3
DEFLECTION PARAMET	ER (SLDP)	669	761	860	965	1078	1200	1331	1471
DEFLECTION PARAMET	ER (SWDP)	0.586	0.567	0.549	0.531	0.512	0.493	0.474	0.456
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIN	IUM NON	INAL LO	AD (psf)		
	16.0	353	376	399	422	445	469	492	515
To be established by	16.5	330	352	373	395	416	438	459	481
the designer.	17.0	309	329	349	369	389	410	430	450
	17.5	290	309	328	346	365	384	402	421
	18.0	272	290	307	325	343	360	378	395
	18.5	256	273	289	305	322	338	355	371
	19.0	241	257	272	287	303	318	334	349
	19.5	227	242	256	271	285	300	314	328
	20.0	215	228	242	255	269	282	296	309
	20.5	203	216	228	241	254	266	279	292
	21.0	192	204	216	228	240	252	264	276
	21.5	182	193	204	215	227	238	249	260
	22.0	172	183	193	204	214	225	236	246
	22.5	163	173	183	193	203	213	223	233
	23.0	153.d	164	174	183	192	202	211	220
	23.5	143.d	156	165	173	182	191	200	209
	24.0	134.d	148	156	165	173	181	190	198
	24.5	126.d	140	148	156	164	172	180	188
	25.0	119.d	134	141	148	156	163	171	178
	25.5	112.d	127	134	141	148	155	162	169
	26.0	106.d	120.d	127	134	141	147	154	160
	26.5	100.d	114.d	121	128	134	140	146	152
	27.0	94.d	107.d	115	121	127	133	139	145
	27.5	89.d	102.d	110	115	121	127	132	138
	28.0	85.d	96.d	105	110	115	120	126	131
	28.5	80.d	91.d	100	105	110	114	119	124
	29.0	76.d	87.d	95	100	104	109	114	118
	29.5	72.d	82.d	90	95	99	104	108	112
	30.0	69.d	78.d	86	90	94	99	103	107
	30.5	65.d	75.d	82	86	90	94	98	101
	31.0	62.d	71.d	78	82	86	89	93	96
	31.5	59.d	68.d	75	78	81	85	88	92
	32.0	57.d	65.d	71	74	78	81	84	87
	32.5	54.d	62.d	68	71	74	77	80	83
	33.0	52.d	59.d	65	67	70	73	76	79

TABLE 1: CS210 LW		AR						MPERIA	
Base Steel Thickness =	0.0435"						Area of St	eel Deck	Included
# 7 Rebar						Light V	Veight Co	ncrete = 1	10 lb/ft
SLAB WEIGHT (psf)		41.4	46.0	50.6	55.2	59.7	64.3	68.9	73.5
CONCRETE VOLUME ()	/d3/100ft2)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	16.9	16.3	15.7	15.2	14.7	14.2	13.8	13.4
MAX. UNSHORED TWO) SPAN (ft)	14.4	13.3	12.4	11.6	10.9	10.3	9.8	9.3
MAX. UNSHORED THR	EE SPAN (ft)	16.4	15.2	14.1	13.2	12.4	11.7	11.1	10.5
l_ (in⁴)		53.4	61.3	69.6	78.5	88.1	98.4	110	122
l (in ⁴)		29.2	32.8	36.6	40.8	45.2	49.8	54.8	60.0
DEFLECTION PARAMET	TER (SLDP)	650	740	836	938	1048	1166	1293	1429
DEFLECTION PARAMET	TER (SWDP)	0.591	0.572	0.554	0.536	0.517	0.499	0.480	0.461
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIN	IUM NON	INAL LO	AD (psf)		
	16.0	332	353	374	395	416	437	458	479
To be established by	16.5	310	330	349	369	388	408	427	447
the designer.	17.0	291	309	327	345	363	381	399	418
	17.5	272	289	306	323	340	357	374	391
	18.0	256	272	287	303	319	335	351	367
	18.5	241	255	270	285	300	314	329	344
	19.0	226	240	254	268	282	296	309	323
	19.5	213	226	239	252	265	278	291	304
	20.0	201	213	226	238	250	262	274	286
	20.5	190	202	213	224	236	247	259	270
	21.0	180	190	201	212	223	233	244	255
	21.5	170	180	190	200	210	220	230	240
	22.0	161	170	180	189	199	208	218	227
	22.5	153	161	170	179	188	197	206	215
	23.0	145	153	161	170	178	186	195	203
	23.5	137	145	153	161	169	177	184	192
	24.0	130	138	145	152	160	167	175	182
	24.5	123.d	131	138	145	152	159	166	172
	25.0	116.d	124	131	137	144	150	157	163
	25.5	109.d	118	124	130	137	143	149	155
	26.0	103.d	112	118	124	130	135	141	147
	26.5	97.d	107	112	118	123	129	134	139
	27.0	92.d	102	107	112	117	122	127	132
	27.5	87.d	97	101	106	111	116	121	126
	28.0	82.d	92	97	101	106	110	115	119
	28.5	78.d	88	92	96	100	105	109	113
	29.0	74.d	83	87	91	95	99	103	107
	29.5	70.d	79	83	87	91	94	98	102
	30.0	67.d	76	79	83	86	90	93	97
	30.5	64.d	72	75	79	82	85	88	92
	31.0	61.d	69	72	75	78	81	84	87
	31.5	58.d	65	68	71	74	77	80	83
	32.0	55.d	62	65	68	70	73	76	78
	32.5	53.d	59	62	64	67	69	72	74
	33.0	50.d	57	59	61	63	66	68	70

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. I_u is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Number: 277

Originally Issued: 06/10/2016

UES

Revised: 06/02/2023

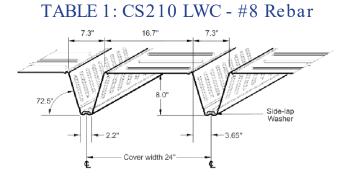

Valid Through: 06/30/2024

TABLE 1: CS210 LWC - #8 REBAR IMPERIAL UNITS									
Base Steel Thickness =	0.0375"						Area of St		
# 8 Rebar						Light W	Veight Co	ncrete = 1	10 lb/ft ³
SLAB WEIGHT (psf)		41.3	45.9	50.5	55.1	59.7	64.2	68.8	73.4
CONCRETE VOLUME (y	d³/100ft²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	14.0	13.4	12.9	12.4	12.0	11.6	11.3	10.9
MAX. UNSHORED TWO	SPAN (ft)	10.8	10.0	9.4	8.8	8.2	7.8	7.3	7.0
MAX. UNSHORED THRE	EE SPAN (ft)	12.3	11.4	10.6	10.0	9.4	8.8	8.4	7.9
l_ (in ⁴)		54.2	62.3	70.8	79.9	89.7	100.2	112	124
l (in ⁴)		30.7	34.5	38.6	43.0	47.6	52.6	57.8	63.3
DEFLECTION PARAMET		668	762	861	967	1080	1202	1332	1472
DEFLECTION PARAMET	ER (SWDP)	0.581	0.562	0.544	0.525	0.507	0.489	0.470	0.452
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIM	UM NON	INAL LO	AD (psf)		
	16.0	370	393	416	438	461	484	506	529
To be established by	16.5	346	367	389	410	431	452	473	494
the designer.	17.0	324	344	364	384	403	423	443	462
	17.5	304	323	341	360	378	396	415	433
	18.0	286	303	320	338	355	372	389	407
	18.5	269	285	301	317	334	350	366	382
	19.0	253	269	284	299	314	329	344	359
	19.5	239	253	267	282	296	310	324	338
	20.0	226	239	252	266	279	292	306	319
	20.5	213	226	238	251	263	276	288	301
	21.0	200.d	214	225	237	249	261	272	284
	21.5	187.d	202	213	224	235	246	257	269
	22.0	174.d	192	202	212	223	233	244	254
	22.5	163.d	182	191	201	211	221	231	240
	23.0	153.d	172	182	191	200	209	218	228
	23.5	143.d	163.d	172	181	190	198	207	216
	24.0	134.d	153.d	164	172	180	188	196	205
	24.5	126.d	144.d	156	163	171	179	186	194
	25.0	119.d	135.d	148	155	162	170	177	184
	25.5	112.d	128.d	141	148	154	161	168	175
	26.0	106.d	120.d	134	140	147	153	160	166
	26.5	100.d	114.d	127	134	140	146	152	158
	27.0	94.d	108.d	121	127	133	139	144	150
	27.5	89.d	102.d	115.d	121	126	132	137	143
	28.0	85.d	96.d	109.d	115	120	126	131	136
	28.5	80.d	91.d	103.d	110	115	119	124	129
	29.0	76.d	87.d	98.d	105	109	114	118	123
	29.5	72.d	82.d	93.d	100	104	108	113	117
	30.0	69.d	78.d	89.d	95	99	103	107	111
	30.5	65.d	75.d	84.d	91	94	98	102	106
	31.0	62.d	71.d	80.d	86	90	94	97	101
	31.5	59.d	68.d	77.d	82	86	89	92	96
	32.0	57.d	65.d	73.d	79	82	85	88	91
	32.5	54.d	62.d	70.d	75	78	81	84	87
	33.0	52.d	59.d	67.d	71	74	77	80	82

TABLE 1: CS210 LW		AK						MPERIA	
Base Steel Thickness =	0.0495"							eel Deck	
# 8 Rebar								ncrete = 1	
SLAB WEIGHT (psf)		42.1	46.7	51.3	55.9	60.5	65.0	69.6	74.2
CONCRETE VOLUME (ye		1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE		19.0	18.4	17.7	17.2	16.6	16.2	15.7	15.3
MAX. UNSHORED TWO		18.3	17.0	15.8	14.8	13.9	13.1	12.4	11.8
MAX. UNSHORED THRE	E SPAN (ft)	20.8	19.3	18.0	16.8	15.8	14.9	14.1	13.4
l <u>(in⁴)</u>		56.0	64.3	73.1	82.5	92.6	103.4	115	128
l <mark>i (in⁴)</mark>		33.4	37.5	42.0	46.9	52.0	57.5	63.4	69.6
DEFLECTION PARAMET		703	801	906	1018	1138	1266	1404	1552
DEFLECTION PARAMET	ER (SWDP)	0.573	0.554	0.535	0.517	0.498	0.480	0.461	0.443
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)	440	400		UM NON			574	600
To be established by	16.0	412	439	466	493	520	547	574	602
To be established by	16.5	385	411	436	461	486	512	537	562
the designer.	17.0	361	385	408	432	456	479	503	527
	17.5	339	361	383	405	427	450	472	494
	18.0	319	339	360	381	401	422	443	464
	18.5	300	319	339	358	378	397	417	436
	19.0	283	301	319	337	356	374	392	410
	19.5	263.d	284	301	318	335	353	370	387
	20.0	244.d	268	284	300	317	333	349	365
	20.5	227.d	254	269	284	299	314	330	345
	21.0	211.d	240	254	269	283	297	312	326
	21.5	197.d	224.d	241	254	268	281	295	308
	22.0	183.d	209.d	228	241	254	267	279	292
	22.5	171.d	195.d	217	229	241	253	265	277
	23.0	161.d	183.d	206	217	228	240	251	262
	23.5	151.d	172.d	194.d	206	217	228	238	249
	24.0	141.d	161.d	182.d	196	206	216	226	236
	24.5	133.d	151.d	171.d	186	196	205	215	225
	25.0	125.d	142.d	161.d	177	186	195	204	214
	25.5	118.d	134.d	152.d	169	177	186	195	203
	26.0	111.d	127.d	143.d	161	169	177	185	193
	26.5	105.d	120.d	135.d	152.d	161	169	176	184
	27.0	99.d	113.d	128.d	144.d	153	161	168	175
	27.5	94.d	107.d	121.d	136.d	146	153	160	167
	28.0	89.d	101.d	115.d	129.d	139	146	152	159
	28.5	84.d	96.d	109.d	122.d	133	139	145	151
	29.0	80.d	91.d	103.d	116.d	127	133	139	144
	29.5	76.d	87.d	98.d	110.d	121	127	132	138
	30.0	72.d	82.d	93.d	105.d	116	121	126	131
	30.5	69.d	78.d	89.d	100.d	110	115	120	125
	31.0	66.d	75.d	84.d	95.d	105	110	115	119
	31.5	62.d	71.d	81.d	90.d	101	105	109	114
	32.0	60.d	68.d	77.d	86.d	96	100	104	109
	32.5	57.d	65.d	73.d	82.d	92	96	100	104
	33.0	54.d	62.d	70.d	79.d	88	91	95	99

TABLE 1: CS210 LW		NR						MPERIA	
Base Steel Thickness =	0.0435"							eel Deck	
# 8 Rebar						Light W	eight Co	ncrete = 1	L10 lb/ft
SLAB WEIGHT (psf)		41.7	46.3	50.9	55.5	60.1	64.6	69.2	73.8
CONCRETE VOLUME (y		1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	16.8	16.2	15.7	15.2	14.6	14.2	13.8	13.4
MAX. UNSHORED TWO		14.3	13.3	12.4	11.6	10.9	10.3	9.7	9.2
MAX. UNSHORED THR	EE SPAN (ft)	16.3	15.1	14.1	13.2	12.4	11.7	11.1	10.5
l_ (in4)		55.1	63.3	71.9	81.2	91.1	101.8	113	126
l_ (in ⁴)		32.0	36.0	40.3	44.9	49.8	55.0	60.6	66.4
DEFLECTION PARAMET		685	781	883	992	1108	1234	1368	1512
DEFLECTION PARAMET	ER (SWDP)	0.578	0.558	0.540	0.521	0.503	0.484	0.466	0.448
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)				IUM NON				
	16.0	391	416	441	466	491	516	541	566
To be established by	16.5	366	389	413	436	459	482	506	529
the designer.	17.0	343	365	386	408	430	452	473	495
	17.5	322	342	362	383	403	423	444	464
	18.0	303	322	341	360	379	398	417	436
	18.5	285	303	320	338	356	374	392	409
	19.0	268	285	302	318	335	352	369	385
	19.5	253	269	285	300	316	332	347	363
	20.0	238.d	254	269	283	298	313	328	342
	20.5	221.d	240	254	268	282	295	309	323
	21.0	205.d	227	240	253	266	279	292	305
	21.5	191.d	215	227	240	252	264	276	289
	22.0	179.d	204.d	215	227	239	250	262	273
	22.5	167.d	190.d	204	215	226	237	248	259
	23.0	156.d	178.d	194	204	214	225	235	245
	23.5	147.d	167.d	184	194	203	213	223	233
	24.0	138.d	157.d	175	184	193	202	212	221
	24.5	129.d	147.d	166	175	184	192	201	210
	25.0	122.d	139.d	157.d	166	175	183	191	199
	25.5	115.d	131.d	148.d	158	166	174	182	189
	26.0	108.d	123.d	140.d	151	158	165	173	180
	26.5	102.d	117.d	132.d	143	150	157	164	171
	27.0	97.d	110.d	125.d	137	143	150	156	163
	27.5	92.d	104.d	118.d	130	136	143	149	155
	28.0	87.d	99.d	112.d	124	130	136	142	148
	28.5	82.d	94.d	106.d	118	124	129	135	140
	29.0	78.d	89.d	101.d	113	118	123	129	134
	29.5	74.d	84.d	96.d	107.d	113	118	123	127
	30.0	70.d	80.d	91.d	102.d	107	112	117	121
	30.5	67.d	76.d	86.d	97.d	102	107	111	116
	31.0	64.d	73.d	82.d	92.d	98	102	106	110
	31.5	61.d	69.d	78.d	88.d	93	97	101	105
	32.0	58.d	66.d	75.d	84.d	89	93	96	100
	32.5	55.d	63.d	71.d	80.d	85	88	92	95
	33.0	53.d	60.d	68.d	77.d	81	84	87	91

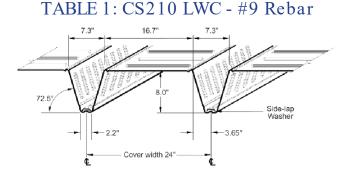
- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. Iu is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Number: 277

.....

Originally Issued: 06/10/2016

Revised: 06/02/2023


Valid Through: 06/30/2024

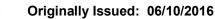

TABLE 1: CS210 LWC - #9 REBAR IMPERIAL UNITS									
Base Steel Thickness =	0.0375"						Area of St		
#9 Rebar						Light W	leight Co	ncrete = 1	10 lb/ft ³
SLAB WEIGHT (psf)		41.7	46.3	50.8	55.4	60.0	64.6	69.2	73.8
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	13.9	13.3	12.8	12.4	11.9	11.6	11.2	10.9
MAX. UNSHORED TWO	SPAN (ft)	10.8	10.0	9.3	8.7	8.2	7.7	7.3	7.0
MAX. UNSHORED THRE	EE SPAN (ft)	12.3	11.4	10.6	9.9	9.3	8.8	8.3	7.9
l_ (in ⁴)		56.0	64.5	73.4	82.9	93.0	104.0	116	128
l (in ⁴)		33.8	38.0	42.6	47.5	52.8	58.3	64.2	70.4
DEFLECTION PARAMET		706	806	913	1026	1147	1277	1415	1564
DEFLECTION PARAMET	ER (SWDP)	0.567	0.547	0.528	0.510	0.492	0.474	0.456	0.438
SLAB THICKNESS (in.)		10.5	11.0	11.5		12.5	14.0		
SHORING	SPAN (ft)				UM NON				
	18.0	336.d	360	381	402	423	444	465	486
To be established by	18.5	310.d	339	358	378	398	417	437	457
the designer.	19.0	286.d	319	338	356	375	393	412	430
	19.5	265.d	302	319	336	354	371	388	406
	20.0	245.d	280.d	301	318	334	350	366	383
	20.5	228.d	260.d	285	300	316	331	346	362
	21.0	212.d	242.d	270	284	299	313	328	342
	21.5	197.d	225.d	255.d	269	283	296	310	324
	22.0	184.d	210.d	238.d	255	268	281	294	307
	22.5	172.d	197.d	223.d	242	254	267	279	291
	23.0	161.d	184.d	208.d	230	241	253	264	276
	23.5	151.d	173.d	195.d	219	229	240	251	262
	24.0	142.d	162.d	183.d	206.d	218	228	239	249
	24.5	133.d	152.d	172.d	194.d	207	217	227	237
	25.0	126.d	143.d	162.d	182.d	197	207	216	225
	25.5	118.d	135.d	153.d	172.d	188	197	205	214
	26.0	112.d	127.d	144.d	162.d	179	187	196	204
	26.5	105.d	120.d	136.d	153.d	171	179	186	194
	27.0	100.d	114.d	129.d	145.d	162.d	170	178	185
	27.5	94.d	108.d	122.d	137.d	153.d	162	169	176
	28.0	89.d	102.d	115.d	130.d	145.d	155	162	168
	28.5	85.d	97.d	110.d	123.d	138.d	148	154	160
	29.0	80.d	92.d	104.d	117.d	131.d	141	147	153
	29.5	76.d	87.d	99.d	111.d	124.d	135	140	146
	30.0	73.d	83.d	94.d	106.d	118.d	129	134	139
	30.5	69.d	79.d	89.d	100.d	112.d	123	128	133
	31.0	66.d	75.d	85.d	96.d	107.d	117	122	127
	31.5	63.d	72.d	81.d	91.d	102.d	112	117	121
	32.0	60.d	68.d	77.d	87.d	97.d	107	112	116
	32.5	57.d	65.d	74.d	83.d	93.d	103	107	111
	33.0	55.d	62.d	71.d	79.d	89.d	98	102	106
	33.5	52.d	60.d	67.d	76.d	85.d	94	97	101
	34.0	50.d	57.d	65.d	73.d	81.d	89	93	96
	34.5	48.d	55.d	62.d	69.d	78.d	86	89	92
	35.0	46.d	52.d	59.d	66.d	74.d	82	85	88

TABLE 1: CS210 LW	<u>C - #9 REBA</u>	NR						MPERIA	
Base Steel Thickness =	0.0495"						Area of St		
# 9 Rebar						Light W	leight Co	ncrete = 1	10 lb/ft
SLAB WEIGHT (psf)		42.5	47.1	51.6	56.2	60.8	65.4	70.0	74.6
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	18.9	18.3	17.7	17.1	16.6	16.1	15.7	15.3
MAX. UNSHORED TWO	SPAN (ft)	18.2	16.9	15.8	14.8	13.9	13.1	12.4	11.8
MAX. UNSHORED THRE	EE SPAN (ft)	20.7	19.2	17.9	16.8	15.8	14.9	14.1	13.4
L_ (in ⁴)		57.8	66.4	75.6	85.3	95.8	107.0	119	132
l, (in ⁴)		36.3	40.9	45.9	51.2	56.9	63.0	69.5	76.3
DEFLECTION PARAMET	ER (SLDP)	740	844	956	1074	1202	1338	1484	1640
DEFLECTION PARAMET	ER (SWDP)	0.561	0.540	0.521	0.503	0.484	0.466	0.448	0.430
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)				IUM NON				
	18.0	352.d	395	419	444	468	493	517	542
To be established by	18.5	325.d	370.d	395	418	441	464	487	510
the designer.	19.0	300.d	342.d	372	394	416	437	459	480
5	19.5	277.d	316.d	352	372	392	413	433	453
	20.0	257.d	293.d	332.d	351	371	390	409	428
	20.5	239.d	272.d	308.d	333	351	369	387	405
	21.0	222.d	253.d	287.d	315	332	349	366	383
	21.5	207.d	236.d	267.d	298	315	331	347	363
	22.0	193.d	220.d	249.d	280.d	298	314	329	344
	22.5	180.d	206.d	233.d	262.d	283	298	312	326
	23.0	169.d	193.d	218.d	245.d	269	283	296	310
	23.5	158.d	181.d	205.d	230.d	256	269	282	295
	24.0	149.d	170.d	192.d	216.d	241.d	256	268	280
	24.5	140.d	159.d	132.d	203.d	227.d	243	255	267
	24.5	132.d	159.d	170.d	191.d	214.d	243	243	254
	25.5	132.d	130.d	160.d	191.d	201.d	221	243	242
	25.5	124.d	141.d 133.d	151.d	170.d	190.d	221	231	242
	26.5	117.d	135.d	143.d	1/0.d	190.d	200.d	210	220
	20.5	104.d	120.d	145.d	152.d	179.d	189.d	201	210
		104.d	119.d 113.d	135.d 128.d	152.d 143.d	170.d	189.d	192	
	27.5 28.0	99.d 94.d	113.d 107.d	128.d 121.d	143.d 136.d	150.d	179.d 169.d	192	200
	28.5	94.d 89.d	107.d	121.d	130.d	152.u 144.d	169.d	185	191
	29.0	84.d	96.d	109.d	122.d	137.d	152.d	167	174
	29.5	80.d	91.d	103.d	116.d	130.d	145.d	160	167
	30.0	76.d	87.d	98.d	111.d	124.d	138.d	153	159
	30.5	72.d	83.d	94.d	105.d	118.d	131.d	145.d	152
	31.0	69.d	79.d	89.d	100.d	112.d	125.d	138.d	146
	31.5	66.d	75.d	85.d	95.d	107.d	119.d	132.d	139
	32.0	63.d	72.d	81.d	91.d	102.d	113.d	126.d	133
	32.5	60.d	68.d	77.d	87.d	97.d	108.d	120.d	127
	33.0	57.d	65.d	74.d	83.d	93.d	103.d	115.d	122
	33.5	55.d	62.d	71.d	79.d	89.d	99.d	110.d	117
	34.0	52.d	60.d	68.d	76.d	85.d	95.d	105.d	112
	34.5	50.d	57.d	65.d	73.d	81.d	91.d	100.d	107
	35.0	48.d	55.d	62.d	70.d	78.d	87.d	96.d	102

TABLE 1: CS210 LW		\R						MPERIA	
Base Steel Thickness =	0.0435"						Area of St		
# 9 Rebar							eight Co		
SLAB WEIGHT (psf)		42.1	46.7	51.2	55.8	60.4	65.0	69.6	74.2
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	16.8	16.2	15.6	15.1	14.6	14.2	13.7	13.3
MAX. UNSHORED TWO) SPAN (ft)	14.3	13.2	12.3	11.6	10.9	10.3	9.7	9.2
MAX. UNSHORED THR	EE SPAN (ft)	16.2	15.0	14.0	13.1	12.3	11.7	11.0	10.5
l, (in4)		56.9	65.4	74.4	84.1	94.4	105.5	117	130
l (in ⁴)		35.0	39.4	44.2	49.3	54.8	60.7	66.8	73.4
DEFLECTION PARAMET		722	825	933	1049	1174	1307	1449	1602
DEFLECTION PARAMET	ER (SWDP)	0.564	0.544	0.525	0.507	0.488	0.470	0.452	0.434
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)				UM NON				
	18.0	344.d	378	400	423	446	469	491	514
To be established by	18.5	317.d	356	377	398	420	441	462	484
the designer.	19.0	293.d	334.d	355	375	396	416	436	456
	19.5	271.d	309.d	335	354	373	392	411	430
	20.0	251.d	286.d	317	335	353	370	388	406
	20.5	233.d	266.d	300	317	333	350	367	384
	21.0	217.d	247.d	280.d	300	316	331	347	363
	21.5	202.d	230.d	261.d	284	299	314	329	344
	22.0	188.d	215.d	244.d	269	283	298	312	326
	22.5	176.d	201.d	228.d	256	269	282	296	309
	23.0	165.d	188.d	213.d	240.d	256	268	281	293
	23.5	155.d	177.d	200.d	225.d	243	255	267	279
	24.0	145.d	166.d	188.d	211.d	231	242	254	265
	24.5	136.d	156.d	176.d	198.d	220	230	241	252
	25.0	128.d	147.d	166.d	187.d	209.d	219	230	240
	25.5	121.d	138.d	156.d	176.d	197.d	209	219	228
	26.0	114.d	130.d	148.d	166.d	185.d	199	208	217
	26.5	108.d	123.d	139.d	157.d	175.d	190	199	207
	27.0	102.d	116.d	132.d	148.d	166.d	181	189	198
	27.5	96.d	110.d	125.d	140.d	157.d	173	181	188
	28.0	91.d	104.d	118.d	133.d	149.d	165	172	180
	28.5	87.d	99.d	112.d	126.d	141.d	157.d	165	172
	29.0	82.d	94.d	106.d	120.d	134.d	149.d	157	164
	29.5	78.d	89.d	101.d	114.d	127.d	141.d	150	156
	30.0	74.d	85.d	96.d	108.d	121.d	134.d	143	149
	30.5	71.d	81.d	91.d	103.d	115.d	128.d	137	143
	31.0	67.d	77.d	87.d	98.d	109.d	122.d	131	136
	31.5	64.d	73.d	83.d	93.d	104.d	116.d	125	130
	32.0	61.d	70.d	79.d	89.d	99.d	111.d	120	125
	32.5	58.d	67.d	76.d	85.d	95.d	106.d	115	119
	33.0	56.d	64.d	72.d	81.d	91.d	101.d	110	114
	33.5	53.d	61.d	69.d	78.d	87.d	97.d	105	109
	34.0	51.d	58.d	66.d	74.d	83.d	92.d	100	104
	34.5	49.d	56.d	63.d	71.d	79.d	88.d	96	99
	35.0	47.d	53.d	60.d	68.d	76.d	85.d	92	95

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. I_u is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Revised: 06/02/2023

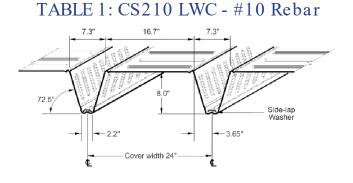

Valid Through: 06/30/2024

TABLE 1: CS210 LWO	TABLE 1: CS210 LWC - #10 REBAR IMPERIAL UNITS									
Base Steel Thickness =	0.0375"						Area of St			
# 10 Rebar						Light W	/eight Co	ncrete = 1	10 lb/ft ³	
SLAB WEIGHT (psf)		42.1	46.7	51.3	55.9	60.5	65.1	69.6	74.2	
CONCRETE VOLUME (ye	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34	
MAX. UNSHORED ONE	SPAN (ft)	13.9	13.3	12.8	12.3	11.9	11.5	11.2	10.9	
MAX. UNSHORED TWO	SPAN (ft)	10.7	9.9	9.3	8.7	8.2	7.7	7.3	6.9	
MAX. UNSHORED THRE	E SPAN (ft)	12.2	11.3	10.5	9.9	9.3	8.8	8.3	7.9	
I. (in ⁴)		58.1	67.0	76.3	86.3	96.9	108.3	121	134	
l (in4)		37.2	42.0	47.2	52.7	58.6	64.9	71.6	78.6	
DEFLECTION PARAMET	ER (SLDP)	749	857	972	1093	1224	1363	1512	1671	
DEFLECTION PARAMET	ER (SWDP)	0.553	0.532	0.513	0.494	0.476	0.458	0.441	0.423	
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	
SHORING	SPAN (ft)			MAXIM	IUM NON	INAL LO	AD (psf)			
	18.0	357.d	408.d	454	479	505	531	556	582	
To be established by	18.5	329.d	376.d	426.d	452	476	500	524	548	
the designer.	19.0	303.d	347.d	393.d	426	449	471	494	516	
_	19.5	281.d	321.d	364.d	402	424	445	466	487	
	20.0	260.d	298.d	337.d	380.d	400	420	441	461	
	20.5	242.d	276.d	313.d	353.d	379	398	417	436	
	21.0	225.d	257.d	291.d	328.d	359	377	395	413	
	21.5	209.d	240.d	272.d	306.d	340	357	374	391	
	22.0	195.d	224.d	253.d	285.d	319.d	339	355	371	
	22.5	183.d	209.d	237.d	267.d	298.d	322	337	352	
	23.0	171.d	196.d	222.d	250.d	279.d	306	320	335	
	23.5	160.d	183.d	208.d	234.d	262.d	291	305	318	
	24.0	151.d	172.d	195.d	220.d	246.d	274.d	290	303	
	24.5	142.d	162.d	184.d	207.d	231.d	257.d	276	288	
	25.0	133.d	152.d	173.d	194.d	218.d	242.d	263	275	
	25.5	126.d	144.d	163.d	183.d	205.d	228.d	251	262	
	26.0	118.d	135.d	154.d	173.d	193.d	215.d	239.d	250	
	26.5	112.d	128.d	145.d	163.d	183.d	203.d	226.d	238	
	27.0	106.d	121.d	137.d	154.d	173.d	192.d	213.d	228	
	27.5	100.d	114.d	130.d	146.d	163.d	182.d	202.d	217	
	28.0	95.d	108.d	123.d	138.d	155.d	172.d	191.d	208	
	28.5	90.d	103.d	117.d	131.d	147.d	164.d	181.d	199	
	29.0	85.d	98.d	111.d	125.d	139.d	155.d	172.d	190	
	29.5	81.d	93.d	105.d	118.d	132.d	147.d	164.d	181.d	
	30.0	77.d	88.d	100.d	112.d	126.d	140.d	156.d	172.d	
	30.5	73.d	84.d	95.d	107.d	120.d	133.d	148.d	164.d	
	31.0	70.d	80.d	91.d	102.d	114.d	127.d	141.d	156.d	
	31.5	67.d	76.d	86.d	97.d	109.d	121.d	134.d	148.d	
	32.0	64.d	73.d	82.d	93.d	104.d	116.d	128.d	142.d	
	32.5	61.d	69.d	79.d	88.d	99.d	110.d	122.d	135.d	
	33.0	58.d	66.d	75.d	85.d	95.d	105.d	117.d	129.d	
	33.5	55.d	63.d	72.d	81.d	90.d	101.d	112.d	123.d	
	34.0	53.d	61.d	69.d	77.d	86.d	96.d	107.d	118.d	
	34.5	51.d	58.d	66.d	74.d	83.d	92.d	102.d	113.d	
	35.0	49.d	56.d	63.d	71.d	79.d	88.d	98.d	108.d	
	35.5	47.d	53.d	60.d	68.d	76.d	85.d	94.d	104.d	
	36.0	45.d	51.d	58.d	65.d	73.d	81.d	90.d	99.d	

TABLE 1: CS210 LW		AR						MPERIA	
Base Steel Thickness =	0.0495"						Area of St		
# 10 Rebar						Light W	leight Co	ncrete = 1	10 lb/ft
SLAB WEIGHT (psf)		42.9	47.5	52.1	56.7	61.3	65.9	70.4	75.0
CONCRETE VOLUME (y		1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	18.9	18.3	17.6	17.1	16.6	16.1	15.7	15.3
MAX. UNSHORED TWO	SPAN (ft)	18.1	16.8	15.7	14.7	13.8	13.1	12.4	11.7
MAX. UNSHORED THRE	E SPAN (ft)	20.6	19.1	17.8	16.7	15.7	14.8	14.0	13.3
l_ (in ⁴)		59.8	68.9	78.4	88.7	99.6	111.3	124	137
l៉ (in4)		39.5	44.7	50.2	56.2	62.6	69.4	76.6	84.2
DEFLECTION PARAMET	ER (SLDP)	781	893	1012	1139	1276	1421	1577	1744
DEFLECTION PARAMET	ER (SWDP)	0.548	0.526	0.507	0.488	0.469	0.451	0.434	0.416
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)				IUM NON	INAL LO	AD (psf)		
	18.0	372.d	425.d	482.d	520	549	578	607	636
To be established by	18.5	343.d	392.d	444.d	490	517	545	572	599
the designer.	19.0	316.d	362.d	410.d	461.d	488	514	540	565
	19.5	293.d	335.d	379.d	427.d	461	485	510	534
	20.0	271.d	310.d	351.d	396.d	436	459	482	505
	20.5	252.d	288.d	326.d	367.d	411.d	434	456	478
	21.0	234.d	268.d	304.d	342.d	383.d	412	432	453
	21.5	218.d	250.d	283.d	318.d	357.d	391	410	429
	22.0	204.d	233.d	264.d	297.d	333.d	371.d	389	407
	22.5	191.d	218.d	247.d	278.d	311.d	347.d	370	387
	23.0	178.d	204.d	231.d	260.d	291.d	324.d	351	368
	23.5	167.d	191.d	217.d	244.d	273.d	304.d	334	350
	24.0	157.d	179.d	203.d	229.d	256.d	286.d	317.d	333
	24.5	148.d	169.d	191.d	215.d	241.d	268.d	298.d	318
	25.0	139.d	159.d	180.d	203.d	227.d	253.d	280.d	303
	25.5	131.d	150.d	170.d	191.d	214.d	238.d	264.d	289
	26.0	123.d	141.d	160.d	180.d	202.d	225.d	249.d	276.d
	26.5	117.d	133.d	151.d	170.d	190.d	212.d	235.d	260.d
	27.0	110.d	126.d	143.d	161.d	180.d	201.d	223.d	246.d
	27.5	104.d	119.d	135.d	152.d	170.d	190.d	211.d	233.d
	28.0	99.d	113.d	128.d	144.d	161.d	180.d	200.d	221.d
	28.5	94.d	107.d	121.d	137.d	153.d	171.d	189.d	209.d
	29.0	89.d	102.d	115.d	130.d	145.d	162.d	180.d	199.d
	29.5	85.d	97.d	110.d	123.d	138.d	154.d	171.d	189.d
	30.0	80.d	92.d	104.d	117.d	131.d	146.d	162.d	179.d
	30.5	76.d	87.d	99.d	112.d	125.d	139.d	154.d	171.d
	31.0	73.d	83.d	94.d	106.d	119.d	133.d	147.d	163.d
	31.5	69.d	79.d	90.d	101.d	113.d	126.d	140.d	155.d
	32.0	66.d	76.d	86.d	97.d	108.d	120.d	134.d	148.d
	32.5	63.d	72.d	82.d	92.d	103.d	115.d	128.d	141.d
	33.0	60.d	69.d	78.d	88.d	99.d	110.d	122.d	135.d
	33.5	58.d	66.d	75.d	84.d	94.d	105.d	117.d	129.d
	34.0	55.d	63.d	72.d	81.d	90.d	100.d	111.d	123.d
	34.5	53.d	60.d	68.d	77.d	86.d	96.d	107.d	118.d
	35.0	51.d	58.d	66.d	74.d	83.d	92.d	102.d	113.d
	35.5	49.d	55.d	63.d	71.d	79.d	88.d	98.d	108.d
	36.0	47.d	53.d	60.d	68.d	76.d	85.d	94.d	104.d

30.5 75.d 86.d 97.d 109.d 122.d 136.d 151.d 31.0 71.d 82.d 92.d 104.d 116.d 130.d 144.d 31.5 68.d 78.d 88.d 99.d 111.d 122.d 137.d 32.0 65.d 78.d 88.d 99.d 111.d 131.d 131.d 32.0 65.d 74.d 84.d 95.d 106.d 118.d 131.d 32.5 62.d 71.d 80.d 97.d 108.d 113.d 122.d 33.0 59.d 68.d 77.d 86.d 97.d 108.d 114.d 34.0 54.d 65.d 73.d 82.d 92.d 103.d 114.d 34.5 52.d 59.d 67.d 79.d 88.d 98.d 109.d 34.5 52.d 59.d 67.d 75.d 84.d 94.d 104.d	TABLE 1: CS210 LW		AR						MPERIA	
SLAB WEIGHT (psf) 42.5 47.1 51.7 56.3 60.9 65.5 70.0 CONCRETE VOLUME (vgf)(00f) 1.26 1.41 1.57 1.72 1.88 2.08 2.18 MAX. UNSHORED DNE SPAN (ft) 1.6.8 1.6.1 1.56 1.5.1 1.4.6 1.3.7 MAX. UNSHORED TWOS SPAN (ft) 1.6.1 1.5.0 1.5.1 1.4.0 1.3.1 1.1.6 1.1.0 1 (m ⁴) 3.8 4.3.3 4.8.7 5.4.4 60.6 6.7.1 7.4.1 1 (m ⁴) 3.8.3 4.3.3 4.8.7 5.4.4 60.6 6.7.1 7.4.1 DEFLECTION PARAMETER (SUDP) 7.65 8.74 991 1.1.6 1.2.0 1.2.0 1.3.0 1.3.5 SHORING SPAN (ft) 1.0.5 1.1.0 1.2.0 1.2.0 1.3.0 1.3.0 1.3.5 SHORING SPAN (ft) 1.0.5 1.0.0 1.0.4 4.4.4 4.69 4.93 5.17 1.9.0 30.0 35.4		0.0435"								
CONCRETE YOLUME (yd ⁴)100ft ⁵) 126 141 157 172 188 2.03 2.18 MAX. UNSHORED DNE SPAN (ft) 168 16.1 15.6 15.1 14.6 14.1 13.7 MAX. UNSHORED TWO SPAN (ft) 16.8 16.1 15.0 14.0 13.1 12.3 11.6 11.0 , (iff) 58 67.9 77.3 87.4 98.2 109.8 122 (iff) 58 67.9 77.3 87.4 98.2 109.8 122 (iff) 58 74 99.1 1116 1249 1391 154 DEFLECTION PARAMETER (SWDP) 0.551 0.530 0.510 0.491 0.473 0.455 0.437 SLAB THICKNESS (in) 10.5 11.0 11.5 12.0 12.5 13.0 13.5 SHORING SPAN (ft) 18.0 364.d 416.d 472.d 500 527 555 582 To be established by the designer. 18.0 364.d 416.d 472.d 500 527 555 582 0.0 265.d 304.d 435.d 471.d 497.d 409 493 517 19.5 286.d 325.d 384.d 401.d 444 469 493 517 19.5 286.d 325.d 371.d 418.d 443 465 488 20.0 265.d 304.d 344.d 387.d 419 440 462 20.5 247.d 282.d 320.d 360.d 396 416 437 21.0 29.9 262.d 297.d 355.d 375.d 375.d 395 414 21.5 214.d 244.d 277.d 312.d 349.d 374 392 22.0 199.d 226.d 259.d 291.d 355.d 375.d 375.d 336.d 336 23.5 164.d 187.d 217.d 312.d 349.d 374 392 22.0 199.d 226.d 259.d 251.d 250.d 337.d 354 23.5 164.d 187.d 212.d 291.d 355.d 375.d 375.d 325.d 375.d 325.d 375.d 325.d 374.d 326.d 337.d 354 23.5 164.d 187.d 212.d 292.d 250.d 253.d 259.d 291.d 336 23.5 164.d 187.d 212.d 292.d 253.d 275.d 325.d 326.d 325.d 326.d 226.d 225.d 128.d 116.d 127.d 128.d 128.d 128.d 126.d 128.d 137.d 128.d 137.d 138.d										
MAX. UNSHORED ONE \$\$ Shar(tt) 16.8 16.1 15.6 15.1 14.6 14.1 13.7 MAX. UNSHORED TWO SPAN(tt) 14.2 13.2 12.3 11.5 10.8 10.2 9.7 MAX. UNSHORED THREE SPAN(tt) 16.1 15.0 14.0 13.1 12.3 11.6 11.0 (inf*) 38.3 43.3 48.7 54.4 60.6 67.1 74.1 OFFLECTION PARAMETER (SLDP) 755 87.4 99.1 1116 12.49 1391 1544 DEFLECTION PARAMETER (SLDP) 0.510 0.491 0.473 0.455 0.437 SLAB THICKNESS (in.) 10.5 11.0 11.5 12.0 12.5 13.0 13.5 SCO 25.2 55.5 58.2 10.9 10.0 35.4 447.4 490 455 14.4 10.5 11.0 11.5 12.0 12.5 55 58.2 To be established by 18.5 335.d 384.d 435.d										74.6
MAX_UNSHORED TWO SPAN (ht) 14.2 13.2 12.3 11.5 10.8 10.2 9.7 MAX_UNSHORED THREE SPAN (ht) 16.1 15.0 14.0 13.1 12.3 11.6 11.0 (iff) 58.9 67.9 77.3 87.4 98.2 109.8 122 (iff) 38.3 48.3 48.7 54.4 60.6 67.1 74.1 DEFLECTION PARAMETER (SUDP) 765 87.4 99.1 1116 1249 139.1 154.4 DEFLECTION PARAMETER (SUDP) 0.551 0.530 0.510 0.491 0.473 0.455 0.437 SLAB THICKNESS (in.) 18.0 364.d 416.d 472.d 500 527 555 582 582 To be established by 18.0 354.d 401.d 444.d 465 483 517 19.0 210.0 256.d 304.d 344.d 357.d 414 440 462 20.5 247.d 282.d 320.d <										2.34
MAX. UNSHORED THREE SPAN (ft) 16.1 15.0 14.0 13.1 12.3 11.6 11.0 , (m ⁴) 38.3 43.3 48.7 54.4 60.6 67.1 74.1 DEFLECTION PARAMETER (SLDP) 755 874 991 1116 1249 1391 1544 DEFLECTION PARAMETER (SUDP) 0.551 0.530 0.510 0.491 0.475 0.455 0.435 SLAD THICKNESS (in) 10.5 11.0 11.5 12.0 12.5 13.0 13.5 SHORING SPAN (ft) MAXIMUM NONINAL LOOD (psf) 10.5 11.0 11.4 4497 523 548 To be established by 18.0 364.d 410.d 444.d 469 493 517 19.5 286.d 328.d 371.d 418.d 443 465 488 20.0 255.d 324.d 320.d 360.d 396 416 437 21.0 229.d 229.d 230.d 374.d	MAX. UNSHORED ONE	SPAN (ft)								13.3
(m ⁿ) 58.9 67.9 77.3 87.4 98.2 109.8 122 (m ⁿ) 38.3 43.3 48.7 54.4 60.6 67.1 74.1 DEFLECTION PARAMETER (SUDP) 765 87.4 991 1116 1249 1391 154.4 DEFLECTION PARAMETER (SWDP) 0.550 0.510 0.491 0.473 0.455 0.437 SAB THICKNESS (in.) 10.5 11.0 11.5 12.0 12.5 13.0 13.5 SUB THICKNESS (in.) 19.0 310.0 354.4 447.4 500 527 555 582 To be established by 18.0 364.4 416.4 471.4 497 523 548 19.0 310.0 354.4 401.4 444 462 462 20.0 262.4 320.4 360.4 374 493 517 21.0 22.9 129.4 226.2 297.4 335.4 375.4 395 414 21.0										9.2
** 38.3 48.7 54.4 60.6 67.1 74.1 DEFLECTION PARAMETER (SLDP) 765 874 991 1116 1249 1391 1544 DEFLECTION PARAMETER (SWDP) 0.551 0.510 0.491 0.473 0.455 0.435 SLAB THICKNESS (in) 10.5 11.0 11.5 12.0 12.5 13.0 13.5 STO be established by 18.0 364.d 446.d 472.d 500 527 555 582 To be established by 19.0 310.d 354.d 495.d 471.d 448.d 469 483 517 19.5 286.d 328.d 371.d 418.d 440 462 20.0 265.d 324.d 344.d 37.d 419 440 462 20.0 265.d 281.d 375.d 395 414 21.5 214.d 242.d 272.d 326.d 337.d 544 21.0 299.d	MAX. UNSHORED THR	EE SPAN (ft)								10.4
DEFLECTION PARAMETER (SLDP) 765 874 991 1116 1249 1391 1544 DEFLECTION PARAMETER (SWDP) 0.551 0.530 0.510 0.491 0.473 0.455 0.435 SLAB THICKNESS (In.) SPAN (ft) I1.5 12.0 12.5 13.0 13.5 SLAB THICKNESS (In.) SPAN (ft) MAXIMUUM NOMINAL LOAD (psf) MAXIMUUM NOMINAL LOAD (psf) 19.0 310.0 354.d 472.d 500 527 555 582 To be established by the designer. 19.0 310.0 354.d 401.d 444.d 469 493 517 19.5 286.d 328.d 371.d 418.d 443 465 488 20.0 265.d 328.d 371.d 436.d 374 392 21.0 22.0 12.0 22.0 374 392 374 392 22.0 199.d 228.d 259.d 281.d 374 392 22.0 186.d 136.d 374 392 22	l, (in4)		58.9	67.9	77.3	87.4	98.2	109.8	122	136
DEFLECTION PARAMETER (SWDP) 0.551 0.530 0.510 0.471 0.473 0.437 SLAB THICKNIESS (in.) SPAN (ft) 10.5 11.0 11.5 12.0 12.5 13.0 13.5 SHORING SPAN (ft) 10.5 11.0 11.5 12.0 12.5 13.0 13.5 SHORING SPAN (ft) 18.0 364.d 416.d 472.d 500 527 555 582 582 10.5 13.0 13.5 331.0 435.d 471.d 497 523 548 19.0 310.d 354.d 401.d 444 469 493 517 19.5 286.d 328.d 371.d 418.d 443 465 488 20.0 265.d 304.d 344.d 387.d 419 440 462 21.0 29.0 221.d 29.0 374 326 375.d 372 32.5 384.d 137.d 138.d 336			38.3	43.3	48.7	54.4	60.6	67.1	74.1	81.4
SLAB THICKNESS (in.) 10.5 11.0 11.5 12.0 12.5 13.0 13.5 SHORING SPAN (ft) MAXIMUM NOMINAL LOAD (psf) To be established by 18.0 364.d 416.d 472.d 500 527 555 582 To be established by 18.0 364.d 416.d 472.d 500 527 555 582 10.0 10.0 354.d 401.d 444.d 469 493 517 19.5 286.d 328.d 371.d 418.d 443 465 488 20.0 255.d 304.d 344.d 387.d 419 440 462 20.5 247.d 282.d 320.d 356.d 375.d 395.d 414 21.5 21.4.d 24.2.d 27.d 35.1.d 317.d 392 22.0 199.d 228.d 259.d 28.1.d 337.d 334 21.0 199.d 228.d 259.d 28.5.d 318.d	DEFLECTION PARAMET	ER (SLDP)	765	874	991	1116	1249	1391	1544	1707
SHORING SPAN (ft) MAXIMUM NOMINAL LOAD (psf) 18.0 364.d 416.d 472.d 500 527 555 582 To be established by 18.5 335.d 384.d 435.d 471 497 523 548 19.0 310.d 354.d 401.d 444 469 493 517 19.0 280.d 328.d 401.d 444 469 493 517 19.0 285.d 328.d 371.d 418.d 443 465 488 20.0 265.d 328.d 320.d 360.d 396 416 437 21.0 229.d 262.d 297.d 335.d 375.d 395 414 21.5 214.d 280.d 290.d 321.d 349.d 374 392 22.0 199.d 228.d 132.d 139.d 257 372 354 335 374 336 375.d 372 22.	DEFLECTION PARAMET	ER (SWDP)	0.551	0.530	0.510	0.491	0.473	0.455	0.437	0.420
18.0 364.d 416.d 472.d 500 527 555 582 To be established by the designer. 18.0 385.d 384.d 435.d 471 497 523 548 19.0 310.d 354.d 401.d 444.d 469 433 517 19.5 286.d 328.d 371.d 418.d 443 465 488 20.0 265.d 324.d 344.d 387.d 419 440 462 20.5 247.d 282.d 320.d 360.d 396 416 437 21.5 214.d 244.d 277.d 312.d 349.d 374 392 22.0 199.d 228.d 259.d 281.d 337 54 23.0 175.d 200.d 226.d 255.d 285.d 318.d 336 23.5 164.d 187.d 176.d 198.d 221.d 298.d 320.d 24.0 154	SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
18.5 335.d 384.d 435.d 471 497 523 548 19.0 310.d 354.d 431.d 444.d 469 493 517 19.5 286.d 328.d 371.d 418.d 443 465 488 20.0 265.d 304.d 344.d 387.d 419 440 462 20.0 265.d 304.d 344.d 387.d 419 440 462 20.0 262.d 297.d 335.d 375.d 395 414 21.5 214.d 244.d 277.d 312.d 349.d 374 392 22.0 199.d 228.d 259.d 255.d 326.d 337 354 23.0 175.d 200.d 226.d 255.d 285.d 318.d 336 23.5 164.d 176.d 198.d 220.d 247.d 274 24.0 154.d 176.d 186.d 206.d<	SHORING	SPAN (ft)			MAXIM	UM NON	INAL LO	AD (psf)		
19.0 310.d 354.d 401.d 444 469 493 517 19.5 286.d 328.d 371.d 418.d 443 465 488 20.0 265.d 328.d 371.d 418.d 443 465 488 20.0 265.d 328.d 371.d 418.d 443 465 488 20.0 265.d 320.d 360.d 396 416 437 21.0 292.d 220.d 392.d 323.d 375.d 395 414 21.5 214.d 244.d 277.d 312.d 349.d 374 392 22.0 199.d 228.d 259.d 281.d 336 337 354 23.0 175.d 200.d 226.d 255.d 385.d 318.d 336 23.5 164.d 187.d 112.d 239.d 267.d 284.d 271.d 286.d 200 23.d 283.d 290.		18.0	364.d	416.d		500			582	609
19.5286.d371.d418.d44346548820.0265.d304.d344.d387.d41944046220.5247.d282.d320.d360.d39641643721.0229.d262.d27.d335.d375.d39541421.5214.d244.d277.d312.d349.d37439222.0199.d228.d259.d291.d326.d35537222.5186.d213.d242.d272.d305.d33735423.0175.d200.d226.d255.d285.d318.d33623.5164.d187.d212.d239.d267.d298.d32024.0154.d176.d199.d224.d21.d20.d30434024.5144.d165.d187.d21.d236.d263.d29025.5128.d146.d166.d187.d20.d247.d274.d25.5128.d117.d136.d157.d176.d196.d22.d247.d26.0121.d138.d167.d186.d208.d230.d259.d26.5118.d113.d140.d157.d176.d196.d220.d248.d27.5102.d117.d132.d149.d167.d186.d206.d20.d28.592.4103.d117.d132.d149.d157.d176.d195.d <td>To be established by</td> <td>18.5</td> <td>335.d</td> <td>384.d</td> <td>435.d</td> <td>471</td> <td>497</td> <td>523</td> <td>548</td> <td>574</td>	To be established by	18.5	335.d	384.d	435.d	471	497	523	548	574
19.5 286.d 371.d 418.d 443 465 488 20.0 265.d 304.d 371.d 418.d 443 465 488 20.0 265.d 304.d 334.d 337.d 419 440 462 20.5 247.d 282.d 320.d 360.d 396 416 437 21.0 229.d 262.d 297.d 335.d 375.d 395 414 21.5 216.d 213.d 224.d 324.d 374 392 22.0 199.d 228.d 259.d 291.d 326.d 357 372 22.5 186.d 213.d 242.d 272.d 305.d 337 354 23.0 175.d 200.d 226.d 255.d 288.d 320 24.0 174.d 176.d 198.d 220.d 244.d 290.d 233.d 290.d 233.d 290.d 235.d 120.d 144.d	the designer.	19.0	310.d	354.d	401.d		469	493	517	541
20.5 $247.d$ $282.d$ $320.d$ $380.d$ $396.d$ 416 $437.d$ 21.0 $229.d$ $222.d$ $277.d$ $312.d$ $349.d$ $314.d$ $392.d$ 21.5 $214.d$ $244.d$ $277.d$ $312.d$ $349.d$ $374.d$ $392.d$ 22.0 $199.d$ $228.d$ $259.d$ $291.d$ $326.d$ $357.d$ $352.d$ 22.5 $186.d$ $213.d$ $242.d$ $272.d$ $305.d$ $337.d$ $354.d$ 23.0 $175.d$ $200.d$ $226.d$ $255.d$ $285.d$ $318.d$ $336.d$ 23.5 $164.d$ $187.d$ $199.d$ $224.d$ $274.d$ $298.d$ $320.d$ 24.0 $154.d$ $176.d$ $199.d$ $224.d$ $251.d$ $280.d$ $304.d$ 24.5 $144.d$ $165.d$ $187.d$ $211.d$ $236.d$ $263.d$ $290.d$ 25.0 $136.d$ $155.d$ $176.d$ $186.d$ $220.d$ $244.d$ $274.d$ 25.5 $128.d$ $146.d$ $167.d$ $187.d$ $29.d$ $23.d$ $29.d$ 26.0 $121.d$ $138.d$ $167.d$ $186.d$ $200.d$ $23.d$ $29.d$ 26.5 $114.d$ $131.d$ $148.d$ $167.d$ $186.d$ $200.d$ $23.d$ $29.d$ 27.5 $102.d$ $117.d$ $132.d$ $149.d$ $167.d$ $186.d$ $206.d$ 28.0 $97.d$ $111.d$ $122.d$ $141.d$ $158.d$ $176.d$ $195.d$ <	5	19.5	286.d	328.d	371.d	418.d	443	465	488	511
21.0229.d262.d297.d335.d375.d39541421.5214.d244.d277.d312.d349.d37439222.0199.d228.d259.d291.d326.d35537222.5186.d213.d242.d272.d305.d33735423.0175.d200.d226.d255.d285.d318.d33623.5164.d187.d212.d239.d267.d298.d32024.0154.d176.d199.d224.d251.d280.d30424.5144.d165.d187.d211.d236.d233.d29425.0136.d155.d176.d198.d222.d247.d233.d29426.0121.d138.d157.d176.d197.d233.d29426.5114.d131.d148.d167.d186.d208.d230.d27.5102.d117.d132.d149.d167.d186.d206.d28.697.d110.d125.d141.d158.d176.d195.d28.697.d110.d13.d127.d136.d151.d167.d29.087.d100.d113.d127.d136.d151.d167.d30.079.d90.d102.d115.d128.d143.d157.d30.575.d86.d97.d100.d113.d124.d136.d151.d <t< td=""><td></td><td>20.0</td><td>265.d</td><td>304.d</td><td>344.d</td><td>387.d</td><td>419</td><td>440</td><td>462</td><td>483</td></t<>		20.0	265.d	304.d	344.d	387.d	419	440	462	483
21.5 21.4d 24.4d 277.d 312.d 349.d 374 392 22.0 199.d 228.d 259.d 291.d 326.d 355 372 22.5 186.d 213.d 242.d 272.d 305.d 337 354 23.0 175.d 200.d 226.d 255.d 285.d 318.d 336 23.5 164.d 187.d 212.d 239.d 267.d 288.d 320 24.0 154.d 176.d 199.d 224.d 251.d 280.d 304 24.5 144.d 165.d 187.d 110 236.d 263.d 290.d 25.0 136.d 155.d 176.d 198.d 222.d 247.d 274.d 26.0 121.d 138.d 157.d 176.d 197.d 220.d 244.d 26.5 114.d 131.d 148.d 167.d 186.d 206.d 20.d 244.d 27.5 102.d 117.d 132.d 140.d 157.d 166.d 20.d <td></td> <td>20.5</td> <td>247.d</td> <td>282.d</td> <td>320.d</td> <td>360.d</td> <td>396</td> <td>416</td> <td>437</td> <td>457</td>		20.5	247.d	282.d	320.d	360.d	396	416	437	457
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		21.0	229.d	262.d	297.d	335.d	375.d	395	414	433
22.5 186.d 213.d 242.d 272.d 305.d 337 354 23.0 175.d 200.d 226.d 255.d 285.d 318.d 336 23.5 164.d 187.d 212.d 239.d 267.d 286.d 320 24.0 154.d 187.d 119.d 224.d 251.d 280.d 304 24.5 144.d 165.d 187.d 211.d 236.d 263.d 290 25.0 136.d 155.d 176.d 198.d 222.d 247.d 274.d 26.0 121.d 138.d 157.d 176.d 197.d 220.d 244.d 26.5 114.d 131.d 148.d 167.d 186.d 208.d 230.d 259.d 26.0 121.d 138.d 157.d 176.d 196.d 218.d 20.d 244.d 20.d 244.d 20.d 244.d 20.d 21.d 23.d 23.d 23.d 23.d 23.d 23.d 20.d 140.d 157.d 176.d 196.d		21.5	214.d	244.d	277.d	312.d	349.d	374	392	410
22.5 186.d 213.d 242.d 272.d 305.d 337 354 23.0 175.d 200.d 226.d 225.d 285.d 318.d 336 23.5 164.d 187.d 212.d 239.d 267.d 286.d 320 24.0 154.d 176.d 199.d 224.d 251.d 280.d 304 24.5 144.d 165.d 187.d 211.d 236.d 263.d 290 25.0 136.d 155.d 176.d 198.d 222.d 247.d 274.d 25.5 128.d 146.d 166.d 187.d 209.d 233.d 259.d 26.0 121.d 138.d 157.d 176.d 196.d 204.d 244.d 26.5 114.d 131.d 148.d 167.d 186.d 208.d 230.d 27.7 102.d 117.d 132.d 149.d 157.d 176.d 196.d 218.d 28.5 97.d 111.d 132.d 149.d 157.d 176.d		22.0		228.d	259.d	291.d	326.d	355	372	390
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			186.d	213.d	242.d	272.d	305.d	337	354	370
23.5164.d187.d212.d239.d267.d298.d32024.0154.d176.d199.d224.d251.d280.d30424.5144.d165.d187.d211.d236.d263.d29025.0136.d155.d176.d198.d222.d247.d274.d25.5128.d146.d165.d176.d198.d22.d247.d274.d25.5128.d146.d165.d176.d197.d200.d233.d259.d26.0121.d138.d157.d176.d197.d200.d244.d26.5114.d131.d148.d167.d186.d208.d230.d27.0108.d123.d140.d157.d176.d195.d208.d230.d28.592.d105.d119.d134.d150.d167.d185.d206.d28.592.d105.d119.d134.d150.d167.d185.d176.d29.087.d100.d113.d127.d142.d158.d176.d30.079.d90.d102.d115.d128.d136.d151.d31.071.d82.d92.d104.d116.d130.d144.d31.568.d78.d88.d99.d111.d124.d135.d33.059.d68.d77.d86.d97.d108.d112.d33.556.d65.d73.d82.d <t< td=""><td></td><td>175.d</td><td>200.d</td><td>226.d</td><td></td><td></td><td>318.d</td><td>336</td><td>352</td></t<>			175.d	200.d	226.d			318.d	336	352
24.0 154.d 176.d 199.d 224.d 251.d 280.d 304 24.5 144.d 165.d 187.d 211.d 236.d 263.d 290 25.0 136.d 155.d 176.d 198.d 222.d 247.d 274.d 25.5 128.d 146.d 165.d 187.d 209.d 233.d 259.d 26.0 121.d 138.d 157.d 176.d 197.d 220.d 244.d 26.5 114.d 131.d 148.d 167.d 186.d 208.d 230.d 27.7 108.d 123.d 140.d 157.d 176.d 196.d 218.d 28.0 97.d 111.d 125.d 141.d 158.d 176.d 195.d 206.d 28.5 92.d 105.d 119.d 134.d 150.d 167.d 185.d 176.d 195.d 185.d 176.d 195.d 185.d 176.d 195.d 185.d 176.d 195.d 185.d 156.d 151.d 167.d 185.d 167.d <td></td> <td></td> <td></td> <td>187.d</td> <td></td> <td></td> <td></td> <td></td> <td>320</td> <td>334</td>				187.d					320	334
24.5144.d165.d187.d211.d236.d263.d29025.0136.d155.d176.d198.d222.d247.d274.d25.5128.d146.d166.d187.d209.d233.d259.d26.0121.d138.d157.d176.d197.d220.d244.d26.5114.d131.d148.d167.d186.d208.d230.d27.0108.d123.d148.d157.d176.d196.d218.d28.592.d105.d119.d157.d176.d196.d218.d29.087.d111.d125.d141.d158.d176.d195.d29.583.d95.d107.d134.d150.d167.d185.d195.d29.583.d95.d107.d121.d135.d151.d167.d30.079.d90.d102.d115.d128.d136.d151.d31.071.d82.d97.d100.d111.d124.d137.d32.065.d74.d88.d97.d101.d113.d127.d33.556.d65.d73.d82.d92.d103.d113.d34.552.d65.d73.d82.d92.d103.d114.d34.554.d65.d73.d82.d94.d104.d34.554.d65.d73.d82.d94.d104.d34.654.d65.d7		24.0						280 d		318
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										303
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										289
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										276
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										263
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										251
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										240
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										228.d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										216.d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										205.d
29.5 83.d 95.d 107.d 121.d 135.d 151.d 167.d 30.0 79.d 90.d 102.d 115.d 128.d 143.d 159.d 30.5 75.d 86.d 97.d 109.d 122.d 136.d 151.d 31.0 71.d 82.d 92.d 104.d 116.d 130.d 144.d 31.5 68.d 78.d 88.d 99.d 111.d 122.d 137.d 32.0 65.d 74.d 88.d 95.d 106.d 118.d 131.d 32.5 62.d 71.d 80.d 90.d 101.d 113.d 125.d 33.0 59.d 68.d 77.d 86.d 97.d 108.d 114.d 33.5 56.d 65.d 73.d 82.d 92.d 103.d 114.d 34.0 54.d 65.d 70.d 79.d 88.d 98.d 109.d 34.5 52.d <										194.d
30.0 79.d 90.d 102.d 115.d 128.d 143.d 159.d 30.5 75.d 86.d 97.d 109.d 122.d 136.d 151.d 31.0 71.d 82.d 92.d 104.d 116.d 130.d 144.d 31.5 68.d 78.d 88.d 99.d 111.d 124.d 137.d 32.0 65.d 74.d 88.d 99.d 101.d 118.d 137.d 32.5 62.d 71.d 80.d 90.d 101.d 118.d 131.d 33.0 59.d 68.d 77.d 80.d 97.d 108.d 119.d 33.5 56.d 65.d 77.d 82.d 92.d 103.d 114.d 34.0 54.d 65.d 70.d 82.d 92.d 103.d 114.d 34.0 54.d 62.d 70.d 79.d 88.d 94.d 109.d 34.5 52.d										185.d
30.5 75.d 86.d 97.d 109.d 122.d 136.d 151.d 31.0 71.d 82.d 92.d 104.d 116.d 130.d 144.d 31.5 68.d 78.d 88.d 99.d 111.d 124.d 137.d 32.0 65.d 78.d 88.d 99.d 110.d 130.d 144.d 32.0 65.d 74.d 84.d 95.d 106.d 118.d 131.d 32.5 62.d 71.d 80.d 97.d 103.d 113.d 125.d 33.0 59.d 68.d 77.d 86.d 97.d 108.d 119.d 33.5 56.d 65.d 73.d 82.d 92.d 103.d 114.d 34.0 54.d 62.d 70.d 79.d 88.d 98.d 109.d 34.5 52.d 59.d 67.d 75.d 84.d 94.d 104.d										176.d
31.0 71.d 82.d 92.d 104.d 116.d 130.d 134.d 31.5 68.d 78.d 88.d 99.d 111.d 124.d 137.d 32.0 65.d 74.d 84.d 95.d 106.d 118.d 131.d 32.5 62.d 71.d 80.d 90.d 101.d 113.d 125.d 33.0 59.d 68.d 77.d 80.d 97.d 108.d 119.d 33.5 56.d 65.d 73.d 82.d 92.d 103.d 114.d 34.0 54.d 65.d 70.d 79.d 88.d 98.d 109.d 34.5 52.d 59.d 67.d 75.d 84.d 94.d 104.d										167.d
31.5 68.d 78.d 88.d 99.d 111.d 124.d 137.d 32.0 65.d 74.d 84.d 95.d 106.d 118.d 131.d 32.5 62.d 71.d 80.d 90.d 101.d 113.d 125.d 33.0 59.d 68.d 77.d 86.d 97.d 108.d 119.d 33.5 56.d 65.d 73.d 82.d 92.d 103.d 114.d 34.0 54.d 62.d 70.d 79.d 88.d 98.d 109.d 34.5 52.d 59.d 67.d 75.d 84.d 94.d 104.d										159.d
32.0 65.d 74.d 84.d 95.d 106.d 118.d 131.d 32.5 62.d 71.d 80.d 90.d 101.d 113.d 125.d 33.0 59.d 68.d 77.d 86.d 97.d 108.d 119.d 33.5 56.d 65.d 73.d 82.d 92.d 103.d 114.d 34.0 54.d 62.d 70.d 88.d 98.d 109.d 34.5 52.2 59.d 67.d 75.d 84.d 94.d 104.d										153.d
32.5 62.d 71.d 80.d 90.d 101.d 113.d 125.d 33.0 59.d 68.d 77.d 86.d 97.d 108.d 119.d 33.5 56.d 65.d 73.d 82.d 92.d 103.d 114.d 34.0 54.d 62.d 70.d 79.d 88.d 98.d 109.d 34.5 52.d 59.d 67.d 75.d 84.d 94.d 104.d										145.d
33.0 59.d 68.d 77.d 86.d 97.d 108.d 119.d 33.5 56.d 65.d 73.d 82.d 92.d 103.d 114.d 34.0 54.d 62.d 70.d 79.d 88.d 98.d 109.d 34.5 52.d 59.d 67.d 75.d 84.d 94.d 104.d										145.d 138.d
33.5 56.d 65.d 73.d 82.d 92.d 103.d 114.d 34.0 54.d 62.d 70.d 79.d 88.d 98.d 109.d 34.5 52.d 59.d 67.d 75.d 84.d 94.d 104.d										138.u
34.0 54.d 62.d 70.d 79.d 88.d 98.d 109.d 34.5 52.d 59.d 67.d 75.d 84.d 94.d 104.d										152.d 126.d
34.5 52.d 59.d 67.d 75.d 84.d 94.d 104.d										
										121.d
									104.d	115.d
										111.d
35.5 47.d 54.d 62.d 69.d 78.d 86.d 96.d 36.0 46.d 52.d 59.d 66.d 74.d 83.d 92.d										106.d

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. Iu is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Number: 277

Originally Issued: 06/10/2016

Revised: 06/02/2023

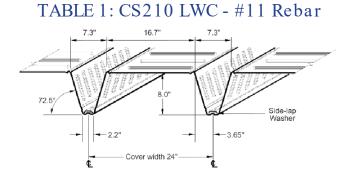

Valid Through: 06/30/2024

TABLE 1: CS210 LWC - #11 REE		AR				IMPERIAL UNIT				
Base Steel Thickness =	0.0375"					A	Area of St	teel Deck	Included	
# 11 Rebar						Light W	eight Co	ncrete = 1	10 lb/ft ³	
SLAB WEIGHT (psf)		42.6	47.2	51.8	56.4	61.0	65.6	70.1	74.7	
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34	
MAX. UNSHORED ONE	SPAN (ft)	13.8	13.3	12.7	12.3	11.9	11.5	11.2	10.9	
MAX. UNSHORED TWO	SPAN (ft)	10.7	9.9	9.2	8.6	8.1	7.7	7.3	6.9	
MAX. UNSHORED THRE	E SPAN (ft)	12.1	11.2	10.5	9.8	9.2	8.7	8.3	7.8	
L_ (in ⁴)		60.1	69.4	79.2	89.7	100.8	112.7	126	139	
I, (in ⁴)		40.5	45.9	51.7	57.9	64.5	71.6	79.0	86.9	
DEFLECTION PARAMET	ER (SLDP)	791	907	1030	1161	1301	1450	1609	1779	
DEFLECTION PARAMET	ER (SWDP)	0.541	0.519	0.499	0.480	0.461	0.443	0.426	0.409	
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	
SHORING	SPAN (ft)			MAXIM	IUM NON	INAL LO	AD (psf)			
	18.0	377.d	432.d	491.d	553.d	592	623	654	685	
To be established by	18.5	347.d	398.d	452.d	509.d	558	587	616	645	
the designer.	19.0	321.d	367.d	417.d	470.d	527.d	554	581	609	
	19.5	296.d	340.d	386.d	435.d	487.d	524	549	575	
	20.0	275.d	315.d	358.d	403.d	452.d	495	520	544	
	20.5	255.d	293.d	332.d	374.d	419.d	467.d	492	515	
	21.0	237.d	272.d	309.d	348.d	390.d	435.d	466	488	
	21.5	221.d	254.d	288.d	325.d	364.d	405.d	443	463	
	22.0	206.d	237.d	269.d	303.d	339.d	378.d	420.d	440	
	22.5	193.d	221.d	251.d	283.d	317.d	354.d	392.d	418	
	23.0	181.d	207.d	235.d	265.d	297.d	331.d	367.d	398	
	23.5	169.d	194.d	220.d	249.d	278.d	310.d	344.d	378	
	24.0	159.d	182.d	207.d	233.d	261.d	291.d	323.d	358.d	
	24.5	149.d	171.d	195.d	219.d	246.d	274.d	304.d	336.d	
	25.0	141.d	161.d	183.d	206.d	231.d	258.d	286.d	316.d	
	25.5	133.d	152.d	173.d	195.d	218.d	243.d	270.d	298.d	
	26.0	125.d	143.d	163.d	183.d	206.d	229.d	254.d	281.d	
	26.5	118.d	135.d	154.d	173.d	194.d	216.d	240.d	266.d	
	27.0	112.d	128.d	145.d	164.d	184.d	205.d	227.d	251.d	
	27.5	106.d	121.d	138.d	155.d	174.d	194.d	215.d	238.d	
	28.0	100.d	115.d	130.d	147.d	165.d	183.d	204.d	225.d	
	28.5	95.d	109.d	124.d	139.d	156.d	174.d	193.d	214.d	
	29.0	90.d	103.d	117.d	132.d	148.d	165.d	183.d	203.d	
	29.5	86.d	98.d	111.d	126.d	141.d	157.d	174.d	193.d	
	30.0	81.d	93.d	106.d	119.d	134.d	149.d	166.d	183.d	
	30.5	77.d	89.d	101.d	114.d	127.d	142.d	158.d	174.d	
	31.0	74.d	85.d	96.d	108.d	121.d	135.d	150.d	166.d	
	31.5	70.d	81.d	92.d	103.d	116.d	129.d	143.d	158.d	
	32.0	67.d	77.d	87.d	98.d	110.d	123.d	136.d	151.d	
	32.5	64.d	73.d	83.d	94.d	105.d	117.d	130.d	144.d	
	33.0	61.d	70.d	80.d	90.d	101.d	112.d	124.d	138.d	
	33.5	58.d	67.d	76.d	86.d	96.d	107.d	119.d	131.d	
	34.0	56.d	64.d	73.d	82.d	92.d	102.d	114.d	126.d	
	34.5	54.d	61.d	70.d	79.d	88.d	98.d	109.d	120.d	
	35.0	51.d	59.d	67.d	75.d	84.d	94.d	104.d	115.d	
	35.5	49.d	56.d	64.d	72.d	81.d	90.d	100.d	110.d	
	36.0	47.d	54.d	61.d	69.d	77.d	86.d	96.d	106.d	

TABLE 1: CS210 LW		AR						MPERIA	
Base Steel Thickness =	0.0495"						Area of St		
# 11 Rebar						Light W	leight Co	ncrete = 1	10 lb/ft
SLAB WEIGHT (psf)		43.4	48.0	52.6	57.2	61.8	66.4	70.9	75.5
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	18.8	18.2	17.6	17.0	16.5	16.1	15.6	15.2
MAX. UNSHORED TWO	SPAN (ft)	18.0	16.7	15.6	14.6	13.8	13.0	12.3	11.7
MAX. UNSHORED THRE	E SPAN (ft)	20.5	19.0	17.7	16.6	15.6	14.8	14.0	13.3
L (in ⁴)		61.7	71.3	81.3	92.0	103.4	115.6	129	143
l [°] (in ⁴)		42.8	48.4	54.6	61.2	68.2	75.7	83.7	92.1
DEFLECTION PARAMET	ER (SLDP)	822	942	1069	1205	1350	1505	1671	1849
DEFLECTION PARAMET	ER (SWDP)	0.537	0.514	0.493	0.474	0.456	0.438	0.420	0.403
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIM	UM NON	INAL LO	AD (psf)		
	18.0	392.d	449.d	509.d	574.d	635	669	703	738
To be established by	18.5	361.d	413.d	469.d	529.d	592.d	631	663	695
the designer.	19.0	333.d	381.d	433.d	488.d	547.d	596	626	656
	19.5	308.d	353.d	400.d	451.d	506.d	563	592	620
	20.0	285.d	327.d	371.d	418.d	469.d	523.d	560	587
	20.5	265.d	304.d	345.d	388.d	435.d	485.d	530	556
	21.0	247.d	282.d	321.d	361.d	405.d	452.d	501.d	527
	21.5	230.d	263.d	299.d	337.d	377.d	421.d	467.d	500
	22.0	214.d	246.d	279.d	314.d	352.d	393.d	436.d	475
	22.5	200.d	230.d	261.d	294.d	329.d	367.d	408.d	451.d
	23.0	188.d	215.d	244.d	275.d	308.d	344.d	382.d	422.d
	23.5	176.d	202.d	229.d	258.d	289.d	322.d	358.d	396.d
	24.0	165.d	189.d	215.d	242.d	271.d	302.d	336.d	371.d
	24.5	155.d	178.d	202.d	228.d	255.d	284.d	316.d	349.d
	25.0	146.d	167.d	190.d	214.d	240.d	268.d	297.d	329.d
	25.5	138.d	158.d	179.d	202.d	226.d	252.d	280.d	310.d
	26.0	130.d	149.d	169.d	190.d	213.d	238.d	264.d	292.d
	26.5	123.d	141.d	160.d	130.d	202.d	225.d	249.d	276.0
	27.0	116.d	133.d	151.d	170.d	191.d	212.d	236.d	261.0
	27.5	110.d	126.d	143.d	161.d	180.d	201.d	223.d	247.0
	28.0	104.d	119.d	135.d	152.d	171.d	190.d	211.d	234.d
	28.5	99.d	113.d	133.d	132.d	162.d	181.d	201.d	222.d
	29.0	94.d	107.d	128.d	137.d	154.d	171.d	190.d	211.0
	29.5	89.d	107.d	1122.d	130.d	146.d	163.d	181.d	200.0
	30.0	85.d	97.d	110.d	130.d	139.d	155.d	172.d	190.d
	30.5	80.d	97.d 92.d	105.d	124.d	139.d	155.d 147.d	172.d	190.d
	31.0	77.d	92.u 88.d	105.d	118.d	132.d	147.d	154.d	172.d
	31.5	73.d	84.d	95.d	107.d	120.d	140.d	130.d	1/2.0 164.d
	32.0	70.d	80.d	95.u 91.d	107.d	120.d	134.d	149.d	104.0 157.d
	32.0	70.d	80.d 76.d	91.d 86.d	102.d 97.d	114.d 109.d	128.d 122.d	142.d 135.d	157.d 150.d
		64.d	76.d 73.d	86.d 83.d	97.d 93.d	109.d	122.d 116.d	135.d 129.d	143.d
	33.0								
	33.5	61.d	70.d	79.d	89.d	100.d	111.d	123.d	137.d
	34.0	58.d	67.d	76.d	85.d	95.d	106.d	118.d	131.d
	34.5	56.d	64.d	72.d	82.d	91.d	102.d	113.d	125.d
	35.0	53.d	61.d	69.d	78.d	87.d	98.d	108.d	120.d
	35.5	51.d	58.d	66.d	75.d	84.d	93.d	104.d	115.d

TABLE 1: CS210 LW		BAR					1	MPERIA	L UNITS
Base Steel Thickness =	0.0435"					4	Area of St	eel Deck	Included
# 11 Rebar						Light W	/eight Co	ncrete = 1	10 lb/ft
SLAB WEIGHT (psf)		43.0	47.6	52.2	56.8	61.4	66.0	70.5	75.1
CONCRETE VOLUME (y	/d3/100ft2)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	16.7	16.1	15.5	15.0	14.5	14.1	13.7	13.3
MAX. UNSHORED TWO	SPAN (ft)	14.1	13.1	12.2	11.4	10.8	10.2	9.6	9.1
MAX. UNSHORED THR	EE SPAN (ft)	16.0	14.9	13.9	13.0	12.2	11.6	10.9	10.4
L_ (in⁴)		60.9	70.3	80.2	90.8	102.1	114.1	127	141
l, (in4)		41.6	47.1	53.1	59.5	66.3	73.6	81.3	89.5
DEFLECTION PARAMET	ER (SLDP)	806	924	1049	1182	1325	1477	1640	1813
DEFLECTION PARAMET	ER (SWDP)	0.539	0.517	0.496	0.477	0.459	0.441	0.423	0.406
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIM	UM NON	INAL LO	AD (psf)		
	18.0	384.d	440.d	500.d	563.d	614	647	679	711
To be established by	18.5	354.d	405.d	460.d	519.d	579	609	640	671
the designer.	19.0	326.d	374.d	425.d	479.d	536.d	575	604	633
-	19.5	302.d	346.d	393.d	443.d	496.d	544	571	598
	20.0	280.d	321.d	364.d	410.d	460.d	513.d	540	566
	20.5	260.d	298.d	338.d	381.d	427.d	476.d	511	536
	21.0	242.d	277.d	315.d	355.d	397.d	443.d	485	508
	21.5	225.d	258.d	293.d	330.d	370.d	413.d	458.d	482
	22.0	210.d	241.d	274.d	308.d	346.d	385.d	428.d	458
	22.5	197.d	225.d	256.d	288.d	323.d	360.d	400.d	435
	23.0	184.d	211.d	239.d	270.d	302.d	337.d	374.d	414
	23.5	173.d	198.d	224.d	253.d	284.d	316.d	351.d	388.d
	24.0	162.d	186.d	211.d	238.d	266.d	297.d	329.d	364.d
	24.5	152.d	174.d	198.d	223.d	250.d	279.d	310.d	343.d
	25.0	143.d	164.d	186.d	210.d	236.d	263.d	291.d	322.d
	25.5	135.d	155.d	176.d	198.d	222.d	247.d	275.d	304.d
	26.0	127.d	146.d	166.d	187.d	209.d	233.d	259.d	287.d
	26.5	120.d	138.d	157.d	176.d	198.d	220.d	245.d	271.d
	27.0	114.d	130.d	148.d	167.d	187.d	208.d	231.d	256.d
	27.5	108.d	123.d	140.d	158.d	177.d	197.d	219.d	242.d
	28.0	102.d	117.d	133.d	150.d	168.d	187.d	207.d	229.d
	28.5	97.d	111.d	126.d	142.d	159.d	177.d	197.d	218.d
	29.0	92.d	105.d	119.d	135.d	151.d	168.d	187.d	207.d
	29.5	87.d	100.d	113.d	128.d	143.d	160.d	177.d	196.d
	30.0	83.d	95.d	108.d	122.d	136.d	152.d	169.d	187.d
	30.5	79.d	90.d	103.d	116.d	130.d	145.d	161.d	178.d
	31.0	75.d	86.d	98.d	110.d	124.d	138.d	153.d	169.d
	31.5	72.d	82.d	93.d	105.d	118.d	131.d	146.d	161.d
	32.0	68.d	78.d	89.d	100.d	112.d	125.d	139.d	154.d
	32.5	65.d	75.d	85.d	96.d	107.d	120.d	133.d	147.d
	33.0	62.d	71.d	81.d	91.d	102.d	114.d	127.d	140.d
	33.5	60.d	68.d	77.d	87.d	98.d	109.d	121.d	134.d
	34.0	57.d	65.d	74.d	84.d	94.d	104.d	116.d	128.d
	34.5	55.d	62.d	71.d	80.d	90.d	100.d	111.d	123.d
	35.0	52.d	60.d	68.d	77.d	86.d	96.d	106.d	117.d
	35.5	50.d	57.d	65.d	73.d	82.d	92.d	102.d	113.d
	36.0	48.d	55.d	62.d	70.d	79.d	88.d	98.d	108.d

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. $I_{\!u}$ is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Number: 277

Originally Issued: 06/10/2016

Revised: 06/02/2023

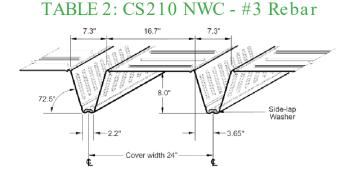

Valid Through: 06/30/2024

TABLE 2: CS210 NW	C - #3 REB	AR					II	MPERIA	LUNITS		
Base Steel Thickness =	0.0375″					A	rea of St	eel Deck	Included		
# 3 Rebar					N	lormal W	eight Co	ncrete = 1	45 lb/ft ³		
SLAB WEIGHT (psf)		52.1	58.1	64.1	70.2	76.2	82.3	88.3	94.4		
CONCRETE VOLUME (ye	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34		
MAX. UNSHORED ONE	SPAN (ft)	12.2	11.7	11.2	10.8	10.4	10.1	9.8	9.5		
MAX. UNSHORED TWO	SPAN (ft)	9.1	8.4	7.7	7.2	6.7	6.3	6.0	5.6		
MAX. UNSHORED THRE	E SPAN (ft)	10.3	9.5	8.8	8.2	7.7	7.2	6.8	6.3		
l, (in ⁴)		54.6	62.5	70.9	80.0	89.9	100.6	112	125		
l _c (in ⁴)		19.1	21.2	23.5	26.0	28.6	31.3	34.3	37.3		
DEFLECTION PARAMET	ER (SLDP)	579	658	743	834	932	1038	1153	1278		
DEFLECTION PARAMET	ER (SWDP)	0.728	0.709	0.690	0.669	0.647	0.624	0.600	0.575		
SLAB THICKNESS (in.)		10.5	11.0	11.5							
SHORING	SPAN (ft)			MAXIM	UM NON	INAL LO	AD (psf)				
L	14.0	175	185	195	204	214	223	233	243		
To be established by the designer.	14.5	161	169	178	187	195	204	213	221		
the designer.	15.0	148	155	163	171	179	187	194	202		
	15.5	136	143	150	157	164	171	178	185		
	16.0	125	131	138	144	150	157	163	169		
	16.5	115	121	127	132	138	144	149	155		
	17.0	106	111	116	122	127	132	137	142		
	17.5	98	103	107	112	116	121	125	130		
	18.0	91	95	99	103	107	111	115	119		
	18.5	84	87	91	94	98	102	105	109		
	19.0	77	80	84	87	90	93	96	99		
	19.5	71	74	77	80	83	85	88	91		
	20.0	66	68	71	73	76	78	80	83		
	20.5	61	63	65	67	69	71	73	75		
	21.0	56	58	60	62	63	65	67	69		
	21.5	52	53	55	56	58	59	61	62		
	22.0	48	49	50	51	53	54	55	56		
	22.5	44	45	46	47	48	49	50	51		
	23.0	40	41	42	43	43	44	45	45		
	23.5										
	24.0										
	24.5										
	25.0										

TABLE 2: CS210 NW		AR						IPERIA	
Base Steel Thickness =	0.0495"					A	rea of St	eel Deck	Included
# 3 Rebar					N	ormal W	eight Cor	ncrete = 1	45 lb/ft ³
SLAB WEIGHT (psf)		52.9	58.9	64.9	71.0	77.0	83.1	89.1	95.2
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	17.0	16.3	15.7	15.1	14.6	14.1	13.7	13.3
MAX. UNSHORED TWO	SPAN (ft)	15.4	14.2	13.1	12.2	11.4	10.7	10.1	9.6
MAX. UNSHORED THRE	EE SPAN (ft)	17.5	16.1	14.9	13.9	13.0	12.2	11.5	10.9
l _u (in ⁴)		56.6	64.8	73.5	82.9	93.1	104.2	116	129
l _e (in ⁴)		22.5	25.2	28.0	31.1	34.4	37.9	41.6	45.5
DEFLECTION PARAMET	ER (SLDP)	622	707	799	897	1003	1118	1242	1376
DEFLECTION PARAMET	ER (SWDP)	0.713	0.694	0.674	0.653	0.631	0.608	0.585	0.561
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIM	UM NON	INAL LO	AD (psf)	_	
To be established by	14.0	232	247	262	277	292	307	322	337
the designer.	14.5	214	227	241	255	269	282	296	310
the designer.	15.0	197	210	222	235	247	260	272	285
	15.5	182	193	205	216	228	239	251	262
	16.0	168	179	189	200	210	221	231	242
	16.5	156	166	175	185	194	204	213	223
	17.0	145	153	162	171	180	188	197	206
	17.5	134	142	150	158	166	174	182	190
	18.0	125	132	139	147	154	161	169	176
	18.5	116	123	129	136	143	149	156	163
	19.0	108	114	120	126	132	138	145	151
	19.5	100	106	112	117	123	128	134	139
	20.0	93	99	104	109	114	119	124	129
	20.5	87	92	96	101	106	110	115	119
	21.0	81	85	89	94	98	102	106	110
	21.5	76	79	83	87	91	94	98	102
	22.0	70	74	77	81	84	87	91	94
	22.5	66	69	72	75	78	81	84	87
	23.0	61	64	66	69	72	75	77	80
	23.5	57	59	62	64	66	69	71	74
	24.0	53	55	57	59	61	63	66	68
	24.5	49	51	53	55	57	58	60	62
	25.0	46	47	49	50	52	54	55	57

TABLE 2: CS210 NW Base Steel Thickness =						4	rea of St	eel Deck	Include
# 3 Rebar	0.0455				1	lormal W			
SLAB WEIGHT (psf)		52.5	58.5	64.5	70.6	76.6	82.7	88.7	94.8
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	15.0	14.3	13.7	13.2	12.7	12.3	11.9	11.6
MAX. UNSHORED TWO	SPAN (ft)	12.1	11.1	10.3	9.6	8.9	8.4	7.9	7.5
MAX. UNSHORED THRE	EE SPAN (ft)	13.7	12.6	11.7	10.9	10.2	9.5	9.0	8.5
l_ (in4)		55.5	63.6	72.2	81.4	91.5	102.4	114	127
l _c (in ⁴)		20.8	23.2	25.8	28.5	31.5	34.6	37.9	41.4
DEFLECTION PARAMET	ER (SLDP)	600	682	770	865	967	1078	1197	1327
DEFLECTION PARAMET	ER (SWDP)	0.721	0.702	0.682	0.661	0.639	0.616	0.592	0.56
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIM	IUM NOM	INAL LO	AD (psf)		
	14.0	204	216	229	241	254	266	278	291
To be established by	14.5	188	199	210	221	233	244	255	266
the designer.	15.0	173	183	193	203	214	224	234	244
	15.5	159	169	178	187	196	206	215	224
	16.0	147	155	164	172	181	189	198	206
	16.5	136	144	151	159	167	174	182	189
	17.0	126	133	140	147	154	160	167	174
	17.5	116	123	129	135	142	148	154	161
	18.0	108	114	119	125	131	136	142	148
	18.5	100	105	110	116	121	126	131	136
	19.0	93	97	102	107	111	116	121	125
	19.5	86	90	95	99	103	107	111	115
	20.0	80	84	87	91	95	99	103	106
	20.5	74	78	81	84	88	91	94	98
	21.0	69	72	75	78	81	84	87	90
	21.5	64	67	69	72	74	77	80	82
	22.0	59	62	64	66	69	71	73	75
	22.5	55	57	59	61	63	65	67	69
	23.0	51	53	54	56	58	60	61	63
	23.5	47	49	50	51	53	54	56	57
	24.0	43	45	46	47	48	50	51	52
	24.5	40	41	42	43	44	45	46	47
	25.0					40	41	42	42

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. Iu is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Number: 277

Originally Issued: 06/10/2016

UES

2016 Revise

Revised: 06/02/2023

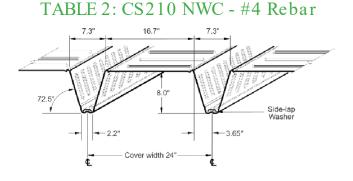

Valid Through: 06/30/2024

TABLE 2: CS210 NW	/C - #4 REB	AR					II	MPERIA	L UNITS
Base Steel Thickness =	0.0375"					4	Area of St	eel Deck	Included
# 4 Rebar					1	Normal W	eight Co	ncrete = 1	45 lb/ft ³
SLAB WEIGHT (psf)		52.2	58.3	64.3	70.3	76.4	82.4	88.5	94.5
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	12.2	11.7	11.2	10.8	10.4	10.1	9.8	9.5
MAX. UNSHORED TWO) SPAN (ft)	9.1	8.4	7.7	7.2	6.7	6.3	6.0	5.6
MAX. UNSHORED THRE	ee Span (ft)	10.3	9.5	8.8	8.2	7.6	7.2	6.8	6.3
l_ (in ⁴)		55.6	63.7	72.3	81.6	91.7	102.6	115	127
l _e (in ⁴)		21.0	23.4	26.0	28.7	31.6	34.7	38.0	41.4
DEFLECTION PARAMET	ER (SLDP)	603	685	773	868	970	1080	1199	1328
DEFLECTION PARAMET	ER (SWDP)	0.716	0.697	0.678	0.657	0.635	0.613	0.589	0.566
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)				IOM NON	1			
To be octablished by	14.0	216	228	240	252	264	276	288	300
To be established by the designer.	14.5	198	209	220	231	242	253	264	275
the designer.	15.0	183	193	203	213	223	232	242	252
	15.5	169	178	187	196	205	214	223	232
	16.0	156	164	172	180	189	197	205	213
	16.5	144	152	159	167	174	181	189	196
	17.0	134	140	147	154	161	167	174	181
	17.5	124	130	136	142	148	154	161	167
	18.0	115	120	126	132	137	143	148	154
	18.5	107	112	117	122	127	132	137	142
	19.0	99	104	108	113	117	122	126	131
	19.5	92	96	100	104	108	112	116	120
	20.0	86	89	93	97	100	104	107	111
	20.5	80	83	86	89	93	96	99	102
	21.0	74	77	80	83	85	88	91	94
	21.5	69	71	74	76	79	81	84	86
	22.0	64	66	68	71	73	75	77	79
	22.5	59	61	63	65	67	69	71	73
	23.0	55	57	58	60	62	63	65	67
	23.5	51	53	54	55	57	58	59	61
	24.0	48	49	50	51	52	53	54	55
	24.5	44	45	46	47	48	49	49	50
	25.0 25.5	41	41	42	43	43	44 40	45	45 41
							40	41	41
	26.0								
	26.5								
	27.5								
	27.5								

TABLE 2: CS210 NW		AR						MPERIA	
Base Steel Thickness =	0.0495"					4	Area of St	eel Deck	Included
# 4 Rebar					1	Vormal W	eight Co	ncrete = 1	45 lb/ft
SLAB WEIGHT (psf)		53.0	59.1	65.1	71.1	77.2	83.2	89.3	95.3
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	17.0	16.3	15.7	15.1	14.6	14.1	13.7	13.3
MAX. UNSHORED TWO	SPAN (ft)	15.4	14.1	13.1	12.2	11.4	10.7	10.1	9.6
MAX. UNSHORED THR	EE SPAN (ft)	17.5	16.1	14.9	13.9	13.0	12.2	11.5	10.9
l_ (in ⁴)		57.6	66.0	74.9	84.5	94.9	106.1	118	132
l_ (in ⁴)		24.4	27.2	30.3	33.7	37.2	41.0	45.1	49.3
DEFLECTION PARAMET	ER (SLDP)	645	733	828	929	1039	1158	1286	1424
DEFLECTION PARAMET	ER (SWDP)	0.702	0.683	0.663	0.642	0.621	0.598	0.575	0.552
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)				UM NON				
To be established?	14.0	272	289	307	324	342	359	377	394
To be established by	14.5	251	267	283	299	315	331	347	363
the designer.	15.0	232	246	261	276	290	305	320	334
	15.5	214	228	241	255	268	282	295	309
	16.0	199	211	223	236	248	260	273	285
	16.5	184	196	207	218	230	241	253	264
	17.0	171	182	192	203	213	224	234	244
	17.5	160	169	179	188	198	207	217	227
	18.0	149	157	166	175	184	193	201	210
	18.5	139	147	155	163	171	179	187	195
	19.0	129	137	144	152	159	167	174	181
	19.5	121	128	134	141	148	155	162	169
	20.0	113	119	125	132	138	144	150	157
	20.5	105	111	117	123	129	134	140	146
	21.0	99	104	109	114	120	125	130	136
	21.5	92	97	102	107	112	116	121	126
	22.0	86	91	95	100	104	108	113	117
	22.5	81	85	89	93	97	101	105	109
	23.0	76	79	83	87	90	94	97	101
	23.5	71	74	77	81	84	87	91	94
	24.0	66	69	72	75	78	81	84	87
	24.5	62	65	67	70	73	75	78	81
	25.0	58	60	63	65	67	70	72	75
	25.5	54	56	58	60	63	65	67	69
	26.0	51	52	54	56	58	60	62	64
	26.5	47	49	50	52	54	55	57	59
	27.0	44	45	47	48	50	51	52	54
	27.5	41	42	43	45	46	47	48	49
	28.0			40	41	42	43	44	45

TABLE 2: CS210 NW		AR					I	MPERIA	L UNITS
Base Steel Thickness =	0.0435"					ļ	Area of St	eel Deck	Included
# 4 Rebar					1	Vormal W	eight Co	ncrete = 1	45 lb/ft
SLAB WEIGHT (psf)		52.6	58.7	64.7	70.7	76.8	82.8	88.9	94.9
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	15.0	14.3	13.7	13.2	12.7	12.3	11.9	11.6
MAX. UNSHORED TWO	SPAN (ft)	12.0	11.1	10.3	9.5	8.9	8.4	7.9	7.5
MAX. UNSHORED THRE	EE SPAN (ft)	13.7	12.6	11.6	10.8	10.1	9.5	9.0	8.5
l_ (in4)		56.6	64.8	73.6	83.0	93.2	104.3	116	130
l (in ⁴)		22.7	25.3	28.1	31.2	34.4	37.9	41.5	45.4
DEFLECTION PARAMET	ER (SLDP)	623	709	800	898	1004	1119	1242	1376
DEFLECTION PARAMET	ER (SWDP)	0.709	0.690	0.671	0.650	0.628	0.606	0.582	0.559
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIM	IUM NON	INAL LO	AD (psf)		
	14.0	244	259	274	289	303	318	333	348
To be established by	14.5	225	238	252	265	279	293	306	320
the designer.	15.0	207	220	232	245	257	269	282	294
	15.5	192	203	214	226	237	248	260	271
	16.0	178	188	198	209	219	229	239	250
	16.5	165	174	183	193	202	212	221	231
	17.0	153	161	170	179	187	196	205	213
	17.5	142	150	158	166	173	181	189	197
	18.0	132	139	146	154	161	168	175	182
	18.5	123	129	136	143	149	156	162	169
	19.0	114	120	126	132	138	144	150	156
	19.5	107	112	118	123	129	134	139	145
	20.0	99	104	109	114	119	124	129	134
	20.5	93	97	102	106	111	115	120	124
	21.0	87	91	95	99	103	107	111	115
	21.5	81	84	88	92	96	99	103	107
	22.0	75	79	82	85	89	92	95	99
	22.5	70	73	76	79	82	85	88	91
	23.0	66	68	71	74	76	79	81	84
	23.5	61	64	66	68	71	73	75	78
	24.0	57	59	61	63	65	67	69	71
	24.5	53	55	57	59	60	62	64	66
	25.0	49	51	53	54	56	57	59	60
	25.5	46	47	49	50	51	53	54	55
	26.0	43	44	45	46	47	48	49	50
	26.5		41	41	42	43	44	45	46
	27.0						40	41	42
	27.5								
	28.0								

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. Iu is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Originally Issued: 06/10/2016

UES

Revised: 06/02/2023

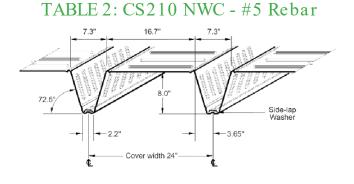

Valid Through: 06/30/2024

TABLE 2: CS210 NW	C - #5 REB	AR						IMPERI#	AL UNITS
Base Steel Thickness =	0.0375"						Area of 9	Steel Decl	k Included
# 5 Rebar						Normal	Weight C	oncrete =	145 lb/ft ³
SLAB WEIGHT (psf)		52.4	58.4	64.5	70.5	76.6	82.6	88.7	94.7
CONCRETE VOLUME (ye	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	12.6	12.1	11.6	11.1	10.7	10.4	10.1	9.8
MAX. UNSHORED TWO	SPAN (ft)	9.1	8.3	7.7	7.2	6.7	6.3	5.9	5.6
MAX. UNSHORED THRE	E SPAN (ft)	10.3	9.5	8.8	8.2	7.6	7.2	6.8	6.3
l _u (in ⁴)		56.9	65.2	74.1	83.6	93.9	105.0	117	130
l _c (in ⁴)		23.3	26.0	28.9	32.0	35.3	38.8	42.5	46.4
DEFLECTION PARAMET	ER (SLDP)	631	718	810	910	1016	1132	1256	1390
DEFLECTION PARAMET	ER (SWDP)	0.702	0.683	0.664	0.644	0.622	0.600	0.577	0.554
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIN	NOM NO	MINAL LO	DAD (psf)		
	14.0	276	292	307	323	339	355	371	387
To be established by	14.5	254	269	283	298	312	327	341	356
the designer.	15.0	235	248	262	275	288	301	315	328
	15.5	218	230	242	254	266	278	291	303
	16.0	202	213	224	235	246	257	269	280
	16.5	187	198	208	218	228	238	249	259
	17.0	174	184	193	202	212	221	230	240
	17.5	162	171	179	188	196	205	214	222
	18.0	151	159	167	175	183	190	198	206
	18.5	141	148	155	163	170	177	184	191
	19.0	132	138	145	151	158	165	171	178
	19.5	123	129	135	141	147	153	159	165
	20.0	115	121	126	131	137	142	148	153
	20.5	108	113	118	123	128	133	138	143
	21.0	101	105	110	114	119	123	128	133
	21.5	94	98	103	107	111	115	119	123
	22.0	88	92	96	99	103	107	111	114
	22.5	83	86	89	93	96	100	103	106
	23.0	77	80	83	87	90	93	96	99
	23.5	72	75	78	81	83	86	89	92
	24.0	68	70	73	75	78	80	82	85
	24.5	64	66	68	70	72	74	76	79
	25.0	59	61	63	65	67	69	71	73
	25.5	56	57	59	61	62	64	65	67
	26.0	52	53	55	56	58	59	60	62

TABLE 2: CS210 NW		AR	_	_				MPERIA	
Base Steel Thickness =	0.0495"					4	Area of St	eel Deck	Included
# 5 Rebar					1	lormal W	eight Co	ncrete = 1	45 lb/ft
SLAB WEIGHT (psf)		53.2	59.2	65.3	71.3	77.4	83.4	89.4	95.5
CONCRETE VOLUME (y	d³/100ft²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	17.5	16.7	16.1	15.6	15.0	14.5	14.1	13.7
MAX. UNSHORED TWO	SPAN (ft)	15.3	14.1	13.1	12.2	11.4	10.7	10.1	9.5
MAX. UNSHORED THRE	E SPAN (ft)	17.4	16.0	14.9	13.8	12.9	12.2	11.5	10.9
l_ (in4)		58.9	67.5	76.6	86.4	97.0	108.5	121	135
l _e (in⁴)		26.5	29.7	33.1	36.8	40.7	44.9	49.3	54.0
DEFLECTION PARAMET	ER (SLDP)	672	764	863	969	1084	1207	1340	1484
DEFLECTION PARAMET	ER (SWDP)	0.689	0.670	0.650	0.630	0.608	0.586	0.564	0.541
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIM	UM NON	INAL LO	AD (psf)		
	14.0	334	356	377	399	421	442	464	486
To be established by	14.5	309	329	349	368	388	408	428	448
the designer.	15.0	286	304	323	341	359	377	396	414
	15.5	265	282	299	316	333	349	366	383
	16.0	246	262	278	293	309	324	340	355
	16.5	229	244	258	272	287	301	315	330
	17.0	214	227	240	253	267	280	293	306
	17.5	200	212	224	236	248	261	273	285
	18.0	186	198	209	220	232	243	254	266
	18.5	174	185	195	206	216	227	237	248
	19.0	163	173	183	192	202	212	221	231
	19.5	153	162	171	180	189	198	207	216
	20.0	143	152	160	168	177	185	193	202
	20.5	135	142	150	158	165	173	181	188
	21.0	126	133	141	148	155	162	169	176
	21.5	119	125	132	138	145	152	158	165
	22.0	112	118	124	130	136	142	148	154
	22.5	105	111	116	122	127	133	139	144
	23.0	99	104	109	114	119	125	130	135
	23.5	93	98	102	107	112	117	121	126
	24.0	87	92	96	101	105	109	114	118
	24.5	82	86	90	94	98	102	106	110
	25.0	77	81	85	88	92	96	100	103
	25.5	73	76	80	83	86	90	93	96
	26.0	69	72	75	78	81	84	87	90

TABLE 2: CS210 NW Base Steel Thickness =							rea of St	VIPERIA eel Deck	
# 5 Rebar	0.0435				1	Vormal W			
SLAB WEIGHT (psf)		52.8	58.8	64.9	70.9	77.0	83.0	89.0	95.1
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	15.4	14.8	14.1	13.6	13.1	12.7	12.3	11.9
MAX. UNSHORED TWO	SPAN (ft)	12.0	11.1	10.2	9.5	8.9	8.4	7.9	7.5
MAX. UNSHORED THRE	E SPAN (ft)	13.7	12.6	11.6	10.8	10.1	9.5	9.0	8.5
l, (in4)		57.9	66.3	75.3	84.9	95.4	106.7	119	132
l_ (in ⁴)		24.9	27.8	31.0	34.4	38.0	41.9	45.9	50.2
DEFLECTION PARAMET	ER (SLDP)	651	741	836	939	1050	1169	1298	1437
DEFLECTION PARAMET	ER (SWDP)	0.696	0.677	0.657	0.637	0.615	0.593	0.571	0.548
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIM	IUM NON	INAL LO	AD (psf)		
	14.0	305	324	343	362	381	400	418	437
To be established by	14.5	282	299	316	334	351	368	385	403
the designer.	15.0	261	277	293	308	324	340	356	372
	15.5	242	256	271	285	300	314	329	344
	16.0	224	238	251	265	278	291	305	318
	16.5	209	221	233	246	258	270	282	295
	17.0	194	206	217	228	240	251	262	274
	17.5	181	192	202	212	223	233	244	254
	18.0	169	179	188	198	207	217	227	236
	18.5	158	167	176	184	193	202	211	220
	19.0	148	156	164	172	180	188	197	205
	19.5	138	146	153	161	168	176	183	191
	20.0	129	136	143	150	157	164	171	178
	20.5	121	128	134	140	147	153	159	166
	21.0	114	120	125	131	137	143	149	155
	21.5	107	112	117	123	128	134	139	144
	22.0	100	105	110	115	120	125	130	135
	22.5	94	98	103	107	112	117	121	126
	23.0	88	92	96	101	105	109	113	117
	23.5	83	87	90	94	98	102	105	109
	24.0	78	81	85	88	91	95	98	102
	24.5	73	76	79	82	85	89	92	95
	25.0	69	71	74	77	80	83	85	88
	25.5	64	67	69	72	74	77	79	82
	26.0	60	63	65	67	69	72	74	76

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. Iu is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Originally Issued: 06/10/2016

UES

Revised: 06/02/2023

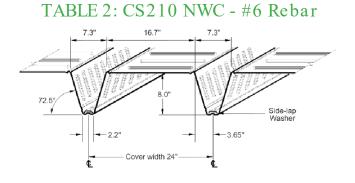

Valid Through: 06/30/2024

TABLE 2: CS210 NW	C - #6 REB.	AR	-				11	MPERIA	L UNITS			
Base Steel Thickness =	0.0375"						Area of St	eel Deck	Included			
# 6 Rebar						Vormal V	leight Co	ncrete = 1	L45 lb/ft ³			
SLAB WEIGHT (psf)		52.6	58.7	64.7	70.8	76.8	82.8	88.9	94.9			
CONCRETE VOLUME (yo	d³/100ft²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34			
MAX. UNSHORED ONE	SPAN (ft)	12.6	12.0	11.5	11.1	10.7	10.4	10.1	9.8			
MAX. UNSHORED TWO	SPAN (ft)	9.0	8.3	7.7	7.2	6.7	6.3	5.9	5.5			
MAX. UNSHORED THRE	E SPAN (ft)	10.3	9.5	8.8	8.2	7.6	7.2	6.7	6.3			
l _u (in ⁴)		58.4	67.0	76.1	85.9	96.4	107.9	120	134			
l _c (in ⁴)		26.0	29.0	32.3	35.9	39.6	43.6	47.7	52.2			
DEFLECTION PARAMETI		664	756	853	958	1070	1191	1322	1462			
DEFLECTION PARAMET	ER (SWDP)	0.687	0.668	0.649	0.628	0.607	0.586	0.564	0.541			
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0 12.5 13.0 13.5 14.0 MUM NOMINAL LOAD (psf)							
SHORING	SPAN (ft)											
To be established by	14.0	336	356	376	396	415	435	455	475			
the designer.	14.5	311	329	347	365	383	401	420	438			
the designer.	15.0	288	304	321	338	354	371	388	404			
	15.5	267	282	298	313	328	344	359	374			
	16.0	248	262	276	290	304	319	333	347			
	16.5	231	244	257	270	283	296	309	322			
	17.0	215	227	239	251	263	275	287	299			
	17.5	201	212	223	234	245	256	267	278			
	18.0	188	198	208	218	228	239	249	259			
	18.5	176	185	194	204	213	223	232	241			
	19.0	165	173	182	191	199	208 194	217	225			
	19.5 20.0	154 145	162 152	170 159	178 167	186 174	194	202 189	210 196			
	20.0	145	152	159	156	1/4	182	189	198			
	20.5	128	145	149	146	153	159	165	185			
	21.5	120	126	140	140	155	139	154	160			
	22.0	113	118	123	129	134	139	145	150			
	22.5	106	110	116	123	125	130	135	140			
	23.0	100	104	109	113	118	122	127	131			
	23.5	94	98	102	106	110	114	118	123			
	24.0	88	92	96	100	103	107	111	115			
	24.5	83	87	90	93	97	100	104	107			
	25.0	78	81	85	88	91	94	97	100			
	25.5	74	77	79	82	85	88	91	93			
	26.0	69	72	74	77	80	82	85	87			
	26.5	65	68	70	72	74	77	79	81			
	27.0	62	64	66	68	70	72	74	76			
	27.5	58	60	61	63	65	67	69	70			
	28.0	54	56	58	59	61	62	64	65			
	28.5	51	53	54	55	57	58	59	61			
	29.0	48	49	50	51	53	54	55	56			

TABLE 2: CS210 NW		AR						MPERIA			
Base Steel Thickness =	0.0495"						Area of St	eel Deck	Include		
# 6 Rebar					1	Vormal W	/eight Co	ncrete = 1	L45 lb/fi		
SLAB WEIGHT (psf)		53.4	59.5	65.5	71.6	77.6	83.6	89.7	95.7		
CONCRETE VOLUME (y	d³/100ft²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34		
MAX. UNSHORED ONE	SPAN (ft)	17.4	16.7	16.1	15.5	15.0	14.5	14.1	13.7		
MAX. UNSHORED TWO		15.3	14.1	13.0	12.2	11.4	10.7	10.1	9.5		
MAX. UNSHORED THR	E SPAN (ft)	17.4	16.0	14.8	13.8	12.9	12.1	11.5	10.8		
l _u (in ⁴)		60.4	69.2	78.6	88.6	99.5	111.3	124	138		
l _c (in ⁴)		29.0	32.6	36.4	40.4	44.8	49.4	54.3	59.5		
DEFLECTION PARAMET		703	800	904	1015	1135	1264	1403	1553		
DEFLECTION PARAMET	ER (SWDP)	0.675	0.656	0.636	0.616	0.595	0.573	0.551	0.529		
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0		
SHORING	SPAN (ft)			MAXIMUM NOMINAL LOAD (psf)							
To be established by	14.0	394	419	445	470	496	521	547	572		
to be established by the designer.	14.5	364	388	411	435	458	482	505	529		
the designer.	15.0	338	359	381	403	424	446	468	489		
	15.5	314	334	354	374	394	414	434	454		
	16.0	292	310	329	347	366	384	403	421		
	16.5	272	289	306	323	341	358	375	392		
	17.0	254	270	286	302	317	333	349	365		
	17.5	237	252	267	282	296	311	326	340		
	18.0	222	236	250	263	277	291	304	318		
	18.5	208	221	234	246	259	272	284	297		
	19.0	195	207	219	231	243	254	266	278		
	19.5	183	194	205	216	227	238	249	260		
	20.0	172	183	193	203	213	223	234	244		
	20.5	162	172	181	191	200	210	219	229		
	21.0	153	161	170	179	188	197	206	214		
	21.5	144	152	160	168	177	185	193	201		
	22.0	136	143	151	158	166	174	181	189		
	22.5 23.0	128 121	135 127	142 134	149 140	156 147	163 154	170 160	178 167		
	23.5	114	120	126	132	138	145	151	157		
	24.0	107	113	119	125	130	136	142	147		
	24.5 25.0	102 96	107	112 106	117 111	123 116	128 120	133 125	139 130		
	25.0	96	101 95	106	104	116	120	125	130		
	25.5	86	95	94	98	109	113	118	122		
	26.0	81	85	94 89	98	96	107	104	108		
	26.5	77	85	89	93	96	94	98	108		
	27.5	72	76	79	82	85	94 89	98	95		
	27.5	68	70	79	77	80	89	86	89		
	28.0	65	67	74	73	75	78	85	89		
	28.5	61	63	66	68	75	73	76	78		

TABLE 2: CS210 NW		AR				_		MPERIA	
Base Steel Thickness =	• 0.0435"						Area of St	eel Deck	Include
# 6 Rebar						Normal W	eight Co	ncrete = 1	45 lb/ft
SLAB WEIGHT (psf)		53.0	59.1	65.1	71.2	77.2	83.2	89.3	95.3
CONCRETE VOLUME ()	rd ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	15.4	14.7	14.1	13.6	13.1	12.7	12.3	11.9
MAX. UNSHORED TWO) SPAN (ft)	12.0	11.0	10.2	9.5	8.9	8.4	7.9	7.5
MAX. UNSHORED THR	EE SPAN (ft)	13.6	12.5	11.6	10.8	10.1	9.5	9.0	8.5
(in ⁴)		59.3	68.0	77.3	87.2	97.9	109.5	122	136
(in ⁴)		27.5	30.8	34.3	38.1	42.2	46.5	51.0	55.8
DEFLECTION PARAMET		683	777	878	986	1102	1227	1362	1507
DEFLECTION PARAMET	TER (SWDP)	0.682	0.662	0.643	0.622	0.601	0.580	0.558	0.536
SLAB THICKNESS (in.)		11.5	12.0	12.5	13.0	13.5	14.0		
SHORING	SPAN (ft)				IOM NON				
To be established to	14.0	365	388	411	433	456	479	502	524
o be established by	14.5	338	359	380	400	421	442	463	484
he designer.	15.0	313	332	351	371	390	409	428	447
	15.5	291	308	326	344	361	379	397	415
	16.0	270	287	303	319	336	352	368	385
	16.5	252	267	282	297	312	327	342	357
	17.0	235	249	263	277	291	305	319	333
	17.5	219	232	245	258	271	284	297	310
	18.0	205	217	229	241	253	265	277	289
	18.5	192	203	214	225	236	248	259	270
	19.0	180	190	201	211	221	231	242	252
	19.5	169	179	188	198	207	217	226	236
	20.0	159	168	176	185	194	203	212	220
	20.5	149	157	165	174	182	190	198	206
	21.0	140	148	155	163	171	178	186	193
	21.5	132	139	146	153	160	167	174	181
	22.0	124	131	137	144	150	157	163	170
	22.5	117	123	129	135	141	147	153	159
	23.0	110	116	121	127	133	138	144	149
	23.5	104	109	114	119	125	130	135	140
	24.0	98	103	108	112	117	122	126	131
	24.5	92	97	101	106	110	114	119	123
	25.0	87	91	95	99	103	107	111	115
	25.5	82	86	90	93	97	101	104	108
	26.0	78	81	84	88	91	95	98	101
	26.5	73	76	79	82	86	89	92	95
	27.0	69	72	75	78	80	83	86	89
	27.5	65	68	70	73	75	78	80	83
	28.0	61	64	66	68	71	73	75	77
	28.5	58	60	62	64	66	68	70	72
	29.0	55	56	58	60	62	64	66	67

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. Iu is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Originally Issued: 06/10/2016

UES

Revised: 06/02/2023

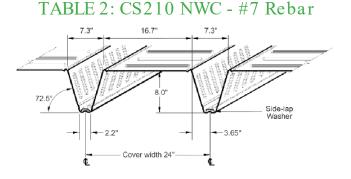

Valid Through: 06/30/2024

TABLE 2: CS210 NWC - #7 REBAR IMPERIAL UNIT:									L UNITS
Base Steel Thickness =	0.0375"						Area of St	eel Deck	Included
# 7 Rebar							leight Co	ncrete = 1	L45 lb/ft ³
SLAB WEIGHT (psf)		52.9	58.9	65.0	71.0	77.1	83.1	89.2	95.2
CONCRETE VOLUME (y		1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	12.6	12.0	11.5	11.1	10.7	10.4	10.0	9.8
MAX. UNSHORED TWO	SPAN (ft)	9.0	8.3	7.7	7.2	6.7	6.3	5.9	5.5
MAX. UNSHORED THRE	EE SPAN (ft)	10.3	9.4	8.7	8.1	7.6	7.1	6.7	6.3
l_ (in ⁴)		60.1	69.0	78.4	88.4	99.3	111.0	124	138
l៉ (in ⁴)		28.8	32.3	36.1	40.1	44.3	48.8	53.6	58.6
DEFLECTION PARAMET		700	797	900	1011	1130	1258	1395	1543
DEFLECTION PARAMET	ER (SWDP)	0.672	0.652	0.633	0.613	0.592	0.571	0.549	0.528
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)				IOM NON				
	16.0	301	319	337	354	372	389	407	425
To be established by	16.5	281	297	314	330	346	362	379	395
the designer.	17.0	263	278	293	308	323	338	353	368
	17.5	246	259	273	287	301	315	329	343
	18.0	230	243	256	269	282	295	308	320
	18.5	216	228	240	252	264	276	288	300
	19.0	202	213	225	236	247	258	269	280
	19.5	190	200	211	221	231	242	252	263
	20.0	179	188	198	208	217	227	236	246
	20.5	168	177	186	195	204	213	222	231
	21.0	158	167	175	183	192	200	208	217
	21.5	149	157	165	172	180	188	196	203
	22.0	141	148	155	162	169	177	184	191
	22.5	133	139	146	153	159	166	173	179
	23.0	125	132	138	144	150	156	162	169
	23.5	118	124	130	136	141	147	153	159
	24.0	112	117	123	128	133	138	144	149
	24.5	106	111	116	121	125	130	135	140
	25.0	100	105	109	114	118	123	127	132
	25.5	95	99	103	107	111	116	120	124
	26.0	90	93	97	101	105	109	113	116
	26.5	85	88 83	92	95	99	102	106	109
		80		87	90	93	96	100 94	103
	27.5	76	79 74	82 77	85 80	88 82	91 85	94 88	96 91
	28.0	68	74	73	75	78	80	82	85
	28.5	64	66	69	71	73	75	77	80
	29.0	64	63	65	67	69	75	73	75
	30.0	57	59	61	63	64	66	68	70
	30.5	54	59	57	59	60	62	64	65
	31.0	54	53	57	59	57	58	59	61
	31.5	48	50	51	52	53	54	59	57
	32.0	46	47	48	49	50	54	52	53
	32.0	40	47	46	49	46	47	48	49
	33.0	43	44	45	45	46	47	48	49
L	33.0	41	41	42	43	43	44	45	45

B.0495" (1) (100ft ²) SPAN (ft) SPAN (ft) E SPAN (ft) ER (SLDP) ER (SWDP) SPAN (ft)	53.7 1.26 17.4 15.3 17.3 62.0 31.8 738 0.661 10.5	59.7 1.41 16.7 14.0 16.0 71.1 35.7 840	65.8 1.57 16.1 13.0 14.8 80.8	71.8 1.72 15.5 12.1 13.8	Vormal W 77.9 1.88 15.0 11.3	Area of St /eight Cor 83.9 2.03 14.5 10.7		
SPAN (ft) SPAN (ft) E SPAN (ft) E SPAN (ft) R (SLDP) R (SWDP)	1.26 17.4 15.3 17.3 62.0 31.8 738 0.661	1.41 16.7 14.0 16.0 71.1 35.7	1.57 16.1 13.0 14.8 80.8	71.8 1.72 15.5 12.1 13.8	77.9 1.88 15.0 11.3	83.9 2.03 14.5	89.9 2.18 14.1	96.0 2.34
SPAN (ft) SPAN (ft) E SPAN (ft) E SPAN (ft) R (SLDP) R (SWDP)	1.26 17.4 15.3 17.3 62.0 31.8 738 0.661	1.41 16.7 14.0 16.0 71.1 35.7	1.57 16.1 13.0 14.8 80.8	1.72 15.5 12.1 13.8	1.88 15.0 11.3	2.03 14.5	2.18 14.1	2.34
SPAN (ft) SPAN (ft) E SPAN (ft) E SPAN (ft) R (SLDP) R (SWDP)	17.4 15.3 17.3 62.0 31.8 738 0.661	16.7 14.0 16.0 71.1 35.7	16.1 13.0 14.8 80.8	15.5 12.1 13.8	15.0 11.3	14.5	14.1	
SPAN (ft) E SPAN (ft) ER (SLDP) ER (SWDP)	15.3 17.3 62.0 31.8 738 0.661	14.0 16.0 71.1 35.7	13.0 14.8 80.8	12.1 13.8	11.3			13.6
E SPAN (ft) R (SLDP) R (SWDP)	17.3 62.0 31.8 738 0.661	16.0 71.1 35.7	14.8 80.8	13.8		10.7	10.1	
R (SLDP) R (SWDP)	62.0 31.8 738 0.661	71.1 35.7	80.8		40.0		10.1	9.5
R (SWDP)	31.8 738 0.661	35.7			12.9	12.1	11.4	10.8
R (SWDP)	738 0.661			91.1	102.3	114.4	128	142
R (SWDP)	0.661	840	39.9	44.4	49.3	54.4	59.9	65.6
R (SWDP)			949	1067	1193	1328	1474	1631
	10.5	0.641	0.621	0.601	0.580	0.559	0.538	0.517
SPAN (ft)	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
			MAXIN	IUM NON	INAL LO	AD (psf)		
16.0	344	366	388	410	432	454	476	498
	321	342	362	382	403	423	444	464
17.0	300	319	338	357	376	395	414	433
		299				369	387	405
					329			378
								354
								332
								312
								293
								275
								259
								244
								230
								216
								204
								192
								181
								171
								162
								152
								144
								136
								128
								120
								1114
								108
								108
								96
								90
								85
								80
								75
								71
								66 62
	16.5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE 2: CS210 NW		AR						MPERIA	
Base Steel Thickness =	0.0435"					-	Area of St	eel Deck	Include
# 7 Rebar					1	Normal W	eight Co	ncrete = 1	L45 lb/f
SLAB WEIGHT (psf)		53.3	59.3	65.4	71.4	77.5	83.5	89.6	95.6
CONCRETE VOLUME (y		1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	15.4	14.7	14.1	13.6	13.1	12.6	12.2	11.9
MAX. UNSHORED TWO	SPAN (ft)	11.9	11.0	10.2	9.5	8.9	8.3	7.9	7.4
MAX. UNSHORED THRE	E SPAN (ft)	13.6	12.5	11.6	10.8	10.1	9.5	8.9	8.5
l, (in ⁴)		61.0	70.0	79.5	89.7	100.8	112.7	126	140
lू (in ⁴)		30.3	34.0	38.0	42.2	46.8	51.6	56.7	62.1
DEFLECTION PARAMET	ER (SLDP)	718	818	924	1038	1161	1292	1434	1587
DEFLECTION PARAMET	ER (SWDP)	0.667	0.647	0.627	0.607	0.586	0.565	0.544	0.522
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIN	IUM NON	INAL LO	AD (psf)		
	16.0	323	343	363	383	402	422	442	462
To be established by	16.5	301	320	338	357	375	393	412	430
the designer.	17.0	282	299	316	333	350	367	384	401
	17.5	264	279	295	311	327	343	359	374
	18.0	247	262	276	291	306	321	335	350
	18.5	232	245	259	273	286	300	314	327
	19.0	218	230	243	256	269	281	294	307
	19.5	204	216	228	240	252	264	276	288
	20.0	192	203	215	226	237	248	259	270
	20.5	181	192	202	212	222	233	243	253
	21.0	171	180	190	200	209	219	228	238
	21.5	161	170	179	188	197	206	215	224
	22.0	152	160	169	177	186	194	202	211
	22.5	144	151	159	167	175	183	190	198
	23.0	136	143	150	158	165	172	179	187
	23.5	128	135	142	149	155	162	169	176
	24.0	121	128	134	140	147	153	159	165
	24.5	115	121	127	132	138	144	150	156
	25.0	109	114	120	125	131	136	141	147
	25.5	103	108	113	118	123	128	133	138
	26.0	98	102	107	112	116	121	126	130
	26.5	92	97	101	105	110	114	118	123
	27.0	88	92	96	100	104	108	112	116
	27.5	83	87	90	94	98	102	105	109
	28.0	79	82	85	89	92	96	99	103
	28.5	74	78	81	84	87	90	93	96
	29.0	71	73	76	79	82	85	88	91
	29.5	67	69	72	75	77	80	83	85
	30.0	63	66	68	71	73	75	78	80
	30.5	60	62	64	66	69	71	73	75
	31.0	57	59	61	63	65	67	69	70
	31.5	54	55	57	59	61	62	64	66
	32.0	51	52	54	55	57	59	60	62
	32.5	48	49	51	52	54	55	56	58
	33.0	45	47	48	49	50	51	53	54

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. I_u is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Number: 277

Originally Issued: 06/10/2016

UES

Revised: 06/02/2023

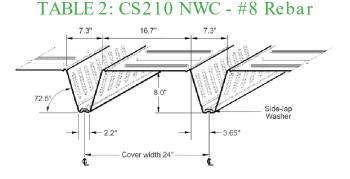

Valid Through: 06/30/2024

TABLE 2: CS210 NW		AR				IMPERIAL UNIT Area of Steel Deck Include					
Base Steel Thickness =	0.0375"										
# 8 Rebar						Vormal V	leight Co	ncrete = 1	45 lb/ft ³		
SLAB WEIGHT (psf)		53.2	59.3	65.3	71.3	77.4	83.4	89.5	95.5		
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34		
MAX. UNSHORED ONE	SPAN (ft)	12.6	12.0	11.5	11.1	10.7	10.4	10.0	9.8		
MAX. UNSHORED TWO	SPAN (ft)	9.0	8.3	7.7	7.1	6.7	6.3	5.9	5.5		
MAX. UNSHORED THRE	EE SPAN (ft)	10.2	9.4	8.7	8.1	7.6	7.1	6.7	6.3		
I, (in ⁴)		61.9	71.1	80.8	91.2	102.4	114.6	128	142		
l (in ⁴)		31.9	35.9	40.1	44.6	49.4	54.5	59.9	65.5		
DEFLECTION PARAMET		738	841	951	1069	1195	1330	1475	1631		
DEFLECTION PARAMET	ER (SWDP)	0.656	0.636	0.616	0.596	0.576	0.555	0.535	0.514		
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0		
SHORING	SPAN (ft)				UM NON						
	16.0	361	383	404	426	448	469	491	513		
To be established by	16.5	337	357	377	397	418	438	458	478		
the designer.	17.0	315	334	353	371	390	409	427	446		
	17.5	295	313	330	347	365	382	399	417		
	18.0	277	293	309	325	342	358	374	390		
	18.5	260	275	290	305	320	335	350	365		
	19.0	245	259	273	287	301	315	329	343		
	19.5	230	243	256	269	282	296	309	322		
	20.0	217	229	241	253	266	278	290	302		
	20.5	204	216	227	239	250	261	273	284		
	21.0	193	204	214	225	236	246	257	268		
	21.5	182	192	202	212	222	232	242	252		
	22.0	172	182	191	200	209	219	228	237		
	22.5	163	172	180	189	198	206	215	224		
	23.0	154	162	170	179	187	195	203	211		
	23.5	146	154	161	169	176	184	192	199		
	24.0	138	145	153	160	167	174	181	188		
	24.5	131	138	144	151	158	164	171	178		
	25.0	124	131	137	143	149	155	161	168		
	25.5	118	124	130	135	141	147	153	158		
	26.0	112	117	123	128	133	139	144	150		
	26.5	106	111	116	121	126	131	136	141		
	27.0	101	106	110	115	120	124	129	134		
	27.5	96	100	105	109	113	117	122	126		
	28.0	91	95	99	103	107	111	115	119		
	28.5	87	90	94	98	101	105	109	113		
	29.0	82	86	89 84	92	96 91	99 94	103	106		
	29.5 30.0	78 74	81	84	88			97	100		
		74	77	76	83 78	86 81	89 84	92 86	95 89		
	30.5	67	69	76	78		79	85	89		
	31.0		66		74	77	79		84 79		
	31.5 32.0	64 60	66	68 64	66	68	75	77	79		
		57	59	61	63	65		68	74		
	32.5	57	59	58	59	65	66 62	64	66		
L	33.0	24	00	20	29	01	02	04	00		

TABLE 2: CS210 NW		AR	_					MPERIA	
Base Steel Thickness =	0.0495"					4	Area of St	eel Deck	Included
# 8 Rebar					I	Vormal W	/eight Co	ncrete = 1	45 lb/ft
SLAB WEIGHT (psf)		54.0	60.1	66.1	72.1	78.2	84.2	90.3	96.3
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	17.4	16.7	16.1	15.5	15.0	14.5	14.0	13.6
MAX. UNSHORED TWO) SPAN (ft)	15.2	14.0	13.0	12.1	11.3	10.6	10.0	9.5
MAX. UNSHORED THR	EE SPAN (ft)	17.3	15.9	14.7	13.7	12.9	12.1	11.4	10.8
l_ (in ⁴)		63.7	73.1	83.2	93.9	105.4	117.8	131	146
l (in ⁴)		34.7	39.1	43.7	48.8	54.1	59.8	65.9	72.3
DEFLECTION PARAMET		774	883	998	1122	1255	1398	1551	1716
DEFLECTION PARAMET	ER (SWDP)	0.647	0.626	0.606	0.586	0.566	0.545	0.524	0.504
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)				IUM NON				
	16.0	403	429	455	481	507	533	559	585
To be established by	16.5	376	400	425	449	473	497	522	546
the designer.	17.0	352	375	397	420	442	465	487	510
	17.5	330	351	372	393	414	435	456	477
	18.0	310	329	349	369	388	408	427	447
	18.5	291	309	328	346	364	383	401	419
	19.0	274	291	308	325	342	360	377	394
	19.5	258	274	290	306	322	338	354	370
	20.0	243	258	273	288	303	318	333	348
	20.5	230	244	258	272	286	300	314	328
	21.0	217	230	243	256	270	283	296	309
	21.5	205	217	230	242	255	267	279	292
	22.0	194	206	217	229	240	252	264	275
	22.5	184	195	205	216	227	238	249	260
	23.0	174	184	195	205	215	225	236	246
	23.5	165	175	184	194	204	213	223	232
	24.0	156.d	166	175	184	193	202	211	220
	24.5	146.d	157	166	174	183	191	200	208
	25.0	138.d	149	157	165	173	181	189	197
	25.5	130.d	141	149	157	164	172	179	187
	26.0	122.d	134	141	148	156	163	170	177
	26.5	116.d	128	134	141	148	154	161	167
	27.0	109.d	121	128	134	140	146	152	159
	27.5	103.d	115	121	127	133	139	144	150
	28.0	98.d	110	115	121	126	131	137	142
	28.5	93.d	104	109	115	120	125	130	135
	29.0	88.d	99	104	109	114	118	123	128
	29.5	84.d	94	99	103	108	112	117	121
	30.0	80.d	90	94	98	102	106	111	115
	30.5	76.d	85	89	93	97	101	105	109
	31.0	72.d	81	85	88	92	96	99	103
	31.5	69.d	77	81	84	87	91	94	97
	32.0	66.d	73	77	80	83	86	89	92
	32.5	63.d	70	73	76	78	81	84	87
	33.0	60.d	66	69	72	74	77	80	82

TABLE 2: CS210 NW		AR						MPERIA	
Base Steel Thickness =	0.0435"						Area of St	eel Deck	Included
# 8 Rebar						Vormal V	/eight Co	ncrete = 1	L45 lb/ft
SLAB WEIGHT (psf)		53.6	59.7	65.7	71.7	77.8	83.8	89.9	95.9
CONCRETE VOLUME (y	d3/100ft2)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	15.3	14.7	14.1	13.5	13.1	12.6	12.2	11.9
MAX. UNSHORED TWO) SPAN (ft)	11.9	11.0	10.2	9.5	8.9	8.3	7.8	7.4
MAX. UNSHORED THR	EE SPAN (ft)	13.5	12.5	11.5	10.8	10.1	9.5	8.9	8.4
l, (in ⁴)		62.7	72.0	81.9	92.5	103.9	116.1	129	144
l (in4)		33.3	37.4	41.9	46.7	51.7	57.1	62.9	68.9
DEFLECTION PARAMET		755	861	974	1095	1224	1363	1513	1673
DEFLECTION PARAMET	ER (SWDP)	0.652	0.632	0.612	0.592	0.571	0.550	0.530	0.509
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIN	IUM NON	INAL LO	AD (psf)		
	16.0	382	406	430	454	478	502	526	549
To be established by	16.5	357	379	401	424	446	468	490	512
the designer.	17.0	334	355	375	396	417	437	458	478
	17.5	313	332	351	371	390	409	428	447
	18.0	294	312	329	347	365	383	401	419
	18.5	276	293	309	326	343	359	376	393
	19.0	259	275	291	306	322	337	353	369
	19.5	244	259	273	288	303	317	332	346
	20.0	230	244	257	271	285	298	312	326
	20.5	217	230	243	255	268	281	294	307
	21.0	205	217	229	241	253	265	277	289
	21.5	194	205	216	227	239	250	261	272
	22.0	183	194	204	215	225	236	246	257
	22.5	173	183	193	203	213	223	232	242
	23.0	164	173	183	192	201	210	220	229
	23.5	156	164	173	182	190	199	207	216
	24.0	148	156	164	172	180	188	196	204
	24.5	140	148	155	163	170	178	185	193
	25.0	133	140	147	154	161	168	175	183
	25.5	126	133	139	146	153	159	166	173
	26.0	119.d	126	132	138	145	151	157	163
	26.5	113.d	120	125	131	137	143	149	155
	27.0	107.d	114	119	124	130	135	141	146
	27.5	101.d	108	113	118	123	128	133	138
	28.0	96.d	102	107	112	117	121	126	131
	28.5	91.d	97	102	106	111	115	119	124
	29.0	86.d	93	97	101	105	109	113	117
	29.5	82.d	88	92	96	99	103	107	111
	30.0	78.d	84	87	91	94	98	101	105
	30.5	74.d	79	83	86	89	92	96	99
	31.0	70.d	75	78	81	84	88	91	94
	31.5	67.d	72	74	77	80	83	86	88
	32.0	64.d	68	71	73	76	78	81	83
	32.5	61.d	65	67	69	72	74	76	79
	33.0	58.d	61	63	66	68	70	72	74

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. Iu is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Number: 277

Originally Issued: 06/10/2016

UES

TABLE 2. COMO NUM

Revised: 06/02/2023

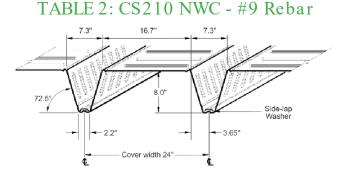

Valid Through: 06/30/2024

TABLE 2: CS210 NW		AR			IMPERIAL UNIT					
Base Steel Thickness =	0.0375"						Area of St			
#9 Rebar						Normal W	leight Co	ncrete = 1	L45 lb/ft ³	
SLAB WEIGHT (psf)		53.6	59.6	65.7	71.7	77.7	83.8	89.8	95.9	
CONCRETE VOLUME (y	d³/100ft²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34	
MAX. UNSHORED ONE	SPAN (ft)	12.5	12.0	11.5	11.1	10.7	10.3	10.0	9.7	
MAX. UNSHORED TWO	SPAN (ft)	9.0	8.2	7.6	7.1	6.7	6.3	5.9	5.5	
MAX. UNSHORED THREE	E SPAN (ft)	10.2	9.4	8.7	8.1	7.6	7.1	6.7	6.3	
l_ (in⁴)		63.7	73.3	83.5	94.3	105.9	118.4	132	147	
l, (in4)		35.2	39.6	44.4	49.5	54.9	60.6	66.7	73.1	
DEFLECTION PARAMET	ER (SLDP)	778	888	1006	1131	1265	1408	1562	1728	
DEFLECTION PARAMET	ER (SWDP)	0.641	0.620	0.600	0.580	0.560	0.540	0.519	0.499	
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	
SHORING	SPAN (ft)			MAXIN	UM NON	INAL LO	AD (psf)			
	18.0	330	350	370	390	409	429	449	469	
To be established by	18.5	310	329	347	366	384	403	422	440	
the designer.	19.0	292	309	327	344	361	379	396	414	
	19.5	275	292	308	324	340	356	373	389	
	20.0	260	275	290	305	321	336	351	366	
	20.5	245	260	274	288	302	317	331	345	
	21.0	232	245	259	272	285	299	312	325	
	21.5	217.d	232	244	257	270	282	295	307	
	22.0	203.d	219	231	243	255	267	278	290	
	22.5	190.d	208	219	230	241	252	263	274	
	23.0	178.d	197	207	218	228	239	249	259	
	23.5	167.d	187	197	206	216	226	236	245	
	24.0	156.d	177	186	196	205	214	223	232	
	24.5	147.d	168.d	177	186	194	203	211	220	
	25.0	138.d	158.d	168	176	184	192	200	208	
	25.5	130.d	149.d	160	167	175	182	190	198	
	26.0	123.d	140.d	152	159	166	173	180	187	
	26.5	116.d	133.d	144	151	157	164	171	178	
	27.0	110.d	125.d	137	143	150	156	162	168	
	27.5	104.d	119.d	130	136	142	148	154	160	
	28.0	98.d	112.d	124	129	135	141	146	152	
	28.5	93.d	107.d	118	123	128	133	139	144	
	29.0	89.d	101.d	112	117	122	127	132	136	
	29.5	84.d	96.d	107	111	116	120	125	129	
	30.0	80.d	91.d	102	106	110	114	119	123	
	30.5	76.d	87.d	97	101	105	109	113	116	
	31.0	73.d	83.d	92	96	99	103	107	110	
	31.5	69.d	79.d	88	91	94	98	101	105	
	32.0	66.d	75.d	83	87	90	93	96	99	
	32.5	63.d	72.d	79	82	85	88	91	94	
	33.0	60.d	69.d	75	78	81	84	86	89	
	33.5	57.d	66.d	72	74	77	79	82	84	
	34.0	55.d	63.d	68	70	73	75	77	80	
	34.5	53.d	60.d	65	67	69	71	73	75	
	35.0	50.d	58.d	62	63	65	67	69	71	

TABLE 2: CS210 NW		AR						MPERIA	
Base Steel Thickness =	0.0495"							eel Deck	
#9 Rebar								ncrete = 1	
SLAB WEIGHT (psf)		54.4	60.4	66.5	72.5	78.5	84.6	90.6	96.7
CONCRETE VOLUME (y		1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	17.3	16.6	16.0	15.5	15.0	14.5	14.0	13.6
MAX. UNSHORED TWO	SPAN (ft)	15.2	14.0	12.9	12.1	11.3	10.6	10.0	9.5
MAX. UNSHORED THRE	EE SPAN (ft)	17.2	15.9	14.7	13.7	12.8	12.1	11.4	10.8
l_ (in ⁴)		65.5	75.4	85.8	96.8	108.8	121.6	136	150
l_ (in ⁴)		37.8	42.7	47.9	53.4	59.4	65.7	72.4	79.5
DEFLECTION PARAMET		813	928	1051	1182	1323	1473	1635	1809
DEFLECTION PARAMET	ER (SWDP)	0.633	0.611	0.591	0.571	0.551	0.531	0.510	0.490
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)					INAL LO			
	18.0	362	385	408	432	455	478	502	525
To be established by	18.5	340	362	384	406	428	449	471	493
the designer.	19.0	320	341	361	382	402	423	443	464
	19.5	302	321	341	360	379	398	417	437
	20.0	282.d	303	321	339	357	375	393	411
	20.5	262.d	286	303	320	337	354	371	388
	21.0	244.d	271	287	303	319	335	351	366
	21.5	227.d	256	271	286	301	316	331	346
	22.0	212.d	242.d	257	271	285	299	313	327
	22.5	198.d	226.d	243	257	270	283	297	310
	23.0	186.d	212.d	231	243	256	268	281	293
	23.5	174.d	199.d	219	231	243	254	266	278
	24.0	163.d	187.d	208	219	230	241	252	264
	24.5	154.d	175.d	197	208	218	229	239	250
	25.0	145.d	165.d	187.d	198	207	217	227	237
	25.5	136.d	156.d	176.d	188	197	206	216	225
	26.0	129.d	147.d	166.d	179	187	196	205	214
	26.5	121.d	139.d	157.d	170	178	187	195	203
	27.0	115.d	131.d	148.d	162	169	177	185	193
	27.5	109.d	124.d	140.d	154	161	169	176	183
	28.0	103.d	117.d	133.d	146	153	160	167	174
	28.5	98.d	111.d	126.d	139	146	153	159	166
	29.0	93.d	106.d	120.d	133	139	145	151	158
	29.5	88.d	100.d	114.d	127	132	138	144	150
	30.0	84.d	96.d	108.d	121	126	132	137	143
	30.5	80.d	91.d	103.d	115	120	125	130	136
	31.0	76.d	87.d	98.d	109	114	119	124	129
	31.5	72.d	83.d	93.d	104	109	113	118	123
	32.0	69.d	79.d	89.d	99	104	108	112	117
	32.5	66.d	75.d	85.d	95	99	103	107	111
	33.0	63.d	72.d	81.d	90	94	98	101	105
	33.5	60.d	69.d	78.d	86	89	93	96	100
	34.0	57.d	66.d	74.d	82	85	88	92	95
	34.5	55.d	63.d	71.d	78	81	84	87	90
	35.0	53.d	60.d	68.d	74	77	80	83	86

TABLE 2: CS210 NW		AR						MPERIA	
Base Steel Thickness =	0.0435"							eel Deck	
# 9 Rebar						Normal W	leight Co	ncrete = 1	L45 lb/fi
SLAB WEIGHT (psf)		54.0	60.0	66.1	72.1	78.1	84.2	90.2	96.3
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	15.3	14.7	14.1	13.5	13.0	12.6	12.2	11.9
MAX. UNSHORED TWO) SPAN (ft)	11.9	10.9	10.1	9.4	8.8	8.3	7.8	7.4
MAX. UNSHORED THR	EE SPAN (ft)	13.5	12.4	11.5	10.7	10.0	9.4	8.9	8.4
l_ (in4)		64.6	74.3	84.6	95.5	107.3	120.0	134	148
l _e (in ⁴)		36.5	41.1	46.1	51.4	57.1	63.1	69.5	76.3
DEFLECTION PARAMET		795	908	1028	1156	1293	1440	1598	1768
DEFLECTION PARAMET	ER (SWDP)	0.637	0.616	0.596	0.576	0.556	0.535	0.515	0.495
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)				IOM NON				
	18.0	346	368	389	411	433	454	476	497
To be established by	18.5	325	346	366	386	406	427	447	467
the designer.	19.0	306	325	344	363	382	401	420	439
	19.5	289	307	324	342	360	378	395	413
	20.0	273	289	306	323	339	356	373	389
	20.5	256.d	273	289	304	320	336	351	367
	21.0	238.d	258	273	288	302	317	332	346
	21.5	222.d	244	258	272	286	299	313	327
	22.0	207.d	231	244	257	270	283	296	309
	22.5	194.d	219	231	244	256	268	280	292
	23.0	182.d	207.d	219	231	242	254	265	277
	23.5	170.d	194.d	208	219	230	240	251	262
	24.0	160.d	182.d	197	207	218	228	238	248
	24.5	150.d	171.d	187	197	207	216	226	235
	25.0	141.d	161.d	178	187	196	205	214	223
	25.5	133.d	152.d	169	178	186	195	203	212
	26.0	126.d	143.d	161	169	177	185	193	201
	26.5	119.d	136.d	153	160	168	176	183	191
	27.0	112.d	128.d	145.d	153	160	167	174	181
	27.5	106.d	121.d	137.d	145	152	158	165	172
	28.0	101.d	115.d	130.d	138	144	151	157	163
	28.5	95.d	109.d	123.d	131	137	143	149	155
	29.0	91.d	103.d	117.d	125	131	136	142	147
	29.5	86.d	98.d	111.d	119	124	129	135	140
	30.0	82.d	93.d	106.d	113	118	123	128	133
	30.5	78.d	89.d	101.d	108	112	117	122	126
	31.0	74.d	85.d	96.d	103	107	111	116	120
	31.5	71.d	81.d	91.d	98	102	106	110	114
	32.0	67.d	77.d	87.d	93	97	101	104	108
	32.5	64.d	73.d	83.d	89	92	96	99	103
	33.0	61.d	70.d	79.d	84	88	91	94	97
	33.5	59.d	67.d	76.d	80	83	86	89	92
	34.0	56.d	64.d	73.d	76	79	82	85	87
	34.5	54.d	61.d	70.d	73	75	78	80	83
	35.0	52.d	59.d	67	69	71	74	76	78

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. Iu is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Number: 277

Originally Issued: 06/10/2016

UES

Revised: 06/02/2023

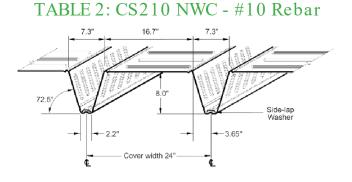

Valid Through: 06/30/2024

	TABLE 2: CS210 NWC - #10 REBAR IMPERIAL UNITS Base Steel Thickness = 0.0375" Area of Steel Deck Included												
Base Steel Thickness =	0.0375"												
# 10 Rebar							leight Co						
SLAB WEIGHT (psf)		54.0	60.1	66.1	72.2	78.2	84.2	90.3	96.3				
CONCRETE VOLUME (y		1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34				
MAX. UNSHORED ONE		12.5	12.0	11.5	11.0	10.7	10.3	10.0	9.7				
MAX. UNSHORED TWO		8.9	8.2	7.6	7.1	6.6	6.2	5.9	5.5				
MAX. UNSHORED THRE	EE SPAN (ft)	10.1	9.3	8.6	8.1	7.5	7.1	6.7	6.2				
l, (in ⁴)		65.9	75.9	86.5	97.8	109.9	122.9	137	152				
l _o (in ⁴)		38.9	43.9	49.3	55.1	61.2	67.7	74.6	81.9				
DEFLECTION PARAMET		824	943	1068	1203	1346	1500	1664	1840				
DEFLECTION PARAMET	ER (SWDP)	0.625	0.603	0.583	0.563	0.543	0.523	0.503	0.483				
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.5	14.0					
SHORING	SPAN (ft)						VAL LOAD (psf)						
	18.0	393.d	418	443	467	492	516	541	565				
To be established by	18.5	362.d	393	416	439	462	485	508	531				
the designer.	19.0	334.d	371	392	414	435	457	478	500				
	19.5	309.d	350	370	390	410	430	451	471				
	20.0	286.d	327.d	349	368	387	406	425	444				
	20.5	266.d	304.d	330	348	366	383	401	419				
	21.0	247.d	283.d	312	329	346	362	379	396				
	21.5	230.d	263.d	295	311	327	343	359	375				
	22.0	215.d	246.d	279.d	295	310	325	340	354				
	22.5	201.d	230.d	261.d	280	294	308	322	336				
	23.0	188.d	215.d	244.d	265	278	292	305	318				
	23.5	176.d	202.d	229.d	252	264	277	289	302				
	24.0	166.d	189.d	215.d	239	251	263	275	286				
	24.5	156.d	178.d	202.d	227.d	238	250	261	272				
	25.0	147.d	168.d	190.d	214.d	227	237	248	258				
	25.5	138.d	158.d	179.d	201.d	216	225	235	245				
	26.0	130.d	149.d	169.d	190.d	205	214	224	233				
	26.5	123.d	141.d	159.d	180.d	195	204	213	222				
	27.0	116.d	133.d	151.d	170.d	186	194	203	211				
	27.5	110.d	126.d	143.d	161.d	177	185	193	201				
	28.0	104.d	119.d	135.d	152.d	169	176	184	191				
	28.5	99.d	113.d	128.d	144.d	161	168	175	182				
	29.0	94.d	107.d	122.d	137.d	153.d	160	167	173				
	29.5	89.d	102.d	116.d	130.d	146.d	153	159	165				
	30.0	85.d	97.d	110.d	124.d	138.d	145	151	157				
	30.5	81.d	92.d	105.d	118.d	132.d	139	144	150				
	31.0	77.d	88.d	100.d	112.d	126.d	132	137	143				
	31.5	73.d	84.d	95.d	107.d	120.d	126	131	136				
	32.0	70.d	80.d	91.d	102.d	114.d	120	125	129				
	32.5	67.d	76.d	86.d	97.d	109.d	115	119	123				
	33.0	64.d	73.d	83.d	93.d	104.d	109	113	117				
	33.5	61.d	70.d	79.d	89.d	99.d	104	108	112				
	34.0	58.d	67.d	76.d	85.d	95.d	99	103	106				
	34.5	56.d	64.d	72.d	81.d	91.d	95	98	101				
	35.0	53.d	61.d	69.d	78.d	87	90	93	96				
	35.5	51.d	59.d	66.d	75.d	83	86	89	92				
	36.0	49.d	56.d	64.d	72.d	79	82	84	87				

TABLE 2: CS210 NW		BAR						MPERIA	
Base Steel Thickness =	0.0495"							eel Deck	
# 10 Rebar								ncrete = 1	
SLAB WEIGHT (psf)		54.8	60.9	66.9	73.0	79.0	85.0	91.1	97.1
CONCRETE VOLUME (ye		1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE		17.3	16.6	16.0	15.4	14.9	14.4	14.0	13.6
MAX. UNSHORED TWO	SPAN (ft)	15.1	13.9	12.9	12.0	11.2	10.6	10.0	9.4
MAX. UNSHORED THRE	E SPAN (ft)	17.1	15.8	14.6	13.6	12.8	12.0	11.3	10.7
l_ (in ⁴)		67.7	77.9	88.8	100.3	112.7	126.0	140	156
l៉_(in4)		41.4	46.8	52.6	58.8	65.4	72.5	80.0	87.9
DEFLECTION PARAMET		858	981	1112	1252	1401	1562	1734	1918
DEFLECTION PARAMET	ER (SWDP)	0.618	0.596	0.575	0.555	0.535	0.515	0.495	0.475
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)				UM NON				
	18.0	409.d	452	480	508	536	564	592	620
To be established by	18.5	376.d	425	452	478	504	530	557	583
the designer.	19.0	347.d	397.d	426	450	475	499	524	549
	19.5	321.d	367.d	401	425	448	471	494	517
	20.0	298.d	341.d	379	401	423	445	466	488
	20.5	277.d	316.d	358	379	400	420	441	461
	21.0	257.d	294.d	333.d	359	378	397	417	436
	21.5	240.d	274.d	311.d	340	358	376	394	413
	22.0	224.d	256.d	290.d	322	339	356	374	391
	22.5	209.d	239.d	271.d	305.d	322	338	354	370
	23.0	196.d	224.d	254.d	286.d	305	321	336	351
	23.5	184.d	210.d	238.d	268.d	290	304	319	334
	24.0	172.d	197.d	223.d	252.d	275	289	303	317
	24.5	162.d	185.d	210.d	236.d	262	275	288	301
	25.0	153.d	174.d	198.d	223.d	249.d	262	274	286
	25.5	144.d	164.d	186.d	210.d	235.d	249	261	272
	26.0	136.d	155.d	176.d	198.d	221.d	237	248	259
	26.5	128.d	146.d	166.d	187.d	209.d	226	236	247
	27.0	121.d	138.d	157.d	177.d	198.d	215	225	235
	27.5	115.d	131.d	149.d	167.d	187.d	205	214	224
	28.0	109.d	124.d	141.d	158.d	177.d	196	204	213
	28.5	103.d	118.d	133.d	150.d	168.d	187	195	203
	29.0	98.d	112.d	127.d	143.d	160.d	178.d	186	194
	29.5	93.d	106.d	120.d	135.d	152.d	169.d	177	185
	30.0	88.d	101.d	114.d	129.d	144.d	161.d	169	177
	30.5	84.d	96.d	109.d	123.d	137.d	153.d	162	168
	31.0	80.d	91.d	104.d	117.d	131.d	146.d	154	161
	31.5	76.d	87.d	99.d	111.d	125.d	139.d	147	153
	32.0	73.d	83.d	94.d	106.d	119.d	132.d	141	146
	32.5	69.d	79.d	90.d	101.d	113.d	126.d	134	140
	33.0	66.d	76.d	86.d	97.d	108.d	121.d	128	133
	33.5	63.d	72.d	82.d	92.d	104.d	115.d	122	127
	34.0	61.d	69.d	79.d	88.d	99.d	110.d	117	121
	34.5	58.d	66.d	75.d	85.d	95.d	106.d	111	116
	35.0	56.d	64.d	72.d	81.d	91.d	101.d	106	110
	35.5	53.d	61.d	69.d	78.d	87.d	97.d	101	105
	36.0	51.d	58.d	66.d	75.d	83.d	93.d	97	100

TABLE 2: CS210 NW		BAR						MPERIA	
Base Steel Thickness =	0.0435"						Area of St		
# 10 Rebar						Vormal W			
SLAB WEIGHT (psf)		54.4	60.5	66.5	72.6	78.6	84.6	90.7	96.7
CONCRETE VOLUME (y		1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE		15.3	14.6	14.0	13.5	13.0	12.6	12.2	11.8
MAX. UNSHORED TWO		11.8	10.9	10.1	9.4	8.8	8.3	7.8	7.4
MAX. UNSHORED THR	EE SPAN (ft)	13.4	12.4	11.5	10.7	10.0	9.4	8.9	8.4
(in ⁴)		66.7	76.9	87.6	99.0	111.3	124.4	139	154
l _e (in ⁴)		40.1	45.3	50.9	56.9	63.3	70.1	77.3	84.9
DEFLECTION PARAMET		840	961	1089	1226	1373	1530	1698	1879
DEFLECTION PARAMET	ER (SWDP)	0.622	0.600	0.579	0.559	0.539	0.519	0.499	0.479
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)				UM NON				
	18.0	400.d	435	462	488	514	540	567	593
To be established by	18.5	369.d	410	434	459	484	508	533	557
the designer.	19.0	340.d	386	409	432	455	478	502	525
	19.5	315.d	360.d	386	408	429	451	473	494
	20.0	292.d	334.d	364	385	405	426	446	466
	20.5	271.d	310.d	344	364	383	402	421	440
	21.0	252.d	288.d	326	344	362	380	398	416
	21.5	235.d	269.d	304.d	326	343	360	377	394
	22.0	219.d	251.d	284.d	309	325	341	357	373
	22.5	205.d	234.d	266.d	293	308	323	338	353
	23.0	192.d	219.d	249.d	278	292	306	321	335
	23.5	180.d	206.d	233.d	263.d	277	291	304	318
	24.0	169.d	193.d	219.d	246.d	263	276	289	302
	24.5	159.d	182.d	206.d	232.d	250	262	275	287
	25.0	149.d	171.d	194.d	218.d	238	250	261	272
	25.5	141.d	161.d	183.d	205.d	227	237	248	259
	26.0	133.d	152.d	172.d	194.d	216	226	236	246
	26.5	125.d	143.d	163.d	183.d	205.d	215	225	234
	27.0	119.d	136.d	154.d	173.d	194.d	205	214	223
	27.5	112.d	128.d	146.d	164.d	183.d	195	204	213
	28.0	106.d	122.d	138.d	155.d	174.d	186	194	202
	28.5	101.d	115.d	131.d	147.d	165.d	177	185	193
	29.0	96.d	109.d	124.d	140.d	156.d	169	176	184
	29.5	91.d	104.d	118.d	133.d	149.d	161	168	175
	30.0	86.d	99.d	112.d	126.d	141.d	154	160	167
	30.5	82.d	94.d	107.d	120.d	134.d	147	153	159
	31.0	78.d	90.d	102.d	114.d	128.d	140	146	152
	31.5	75.d	85.d	97.d	109.d	122.d	134	139	145
	32.0	71.d	81.d	92.d	104.d	116.d	128	133	138
	32.5	68.d	78.d	88.d	99.d	110.d	128	127	132
	33.0	65.d	74.d	84.d	95.d	106.d	116	121	125
	33.5	62.d	74.d	80.d	91.d	100.d	111	115	120
	34.0	59.d	68.d	77.d	87.d	97.d	106	110	114
	34.5	57.d	65.d	74.d	83.d	93.d	100	105	109
	35.0	54.d	62.d	74.d	79.d	89.d	96	100	103
	35.5	54.u	60.d	68.d	79.d	85.d	98	95	99
	36.0	52.d	57.d	65.d	78.d	82.d	87	95	99

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. Iu is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Number: 277

Originally Issued: 06/10/2016

UES

Revised: 06/02/2023

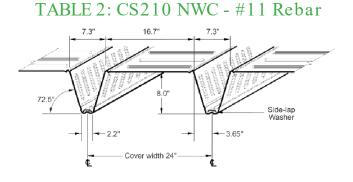
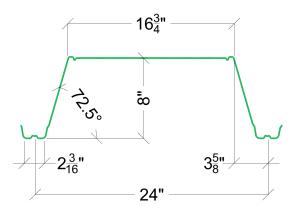

Valid Through: 06/30/2024

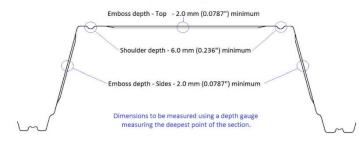
TABLE 2: CS210 NW		BAR						MPERIA	
Base Steel Thickness =	0.0375"							eel Deck	
3# 11 Rebar					1	Vormal W	leight Co	ncrete = 1	45 lb/ft ³
SLAB WEIGHT (psf)		54.5	60.6	66.6	72.7	78.7	84.7	90.8	96.8
CONCRETE VOLUME (y	d ³ /100ft ²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE		12.5	11.9	11.4	11.0	10.6	10.3	10.0	9.7
MAX. UNSHORED TWO		8.9	8.2	7.6	7.1	6.6	6.2	5.8	5.5
MAX. UNSHORED THRE	ee Span (ft)	10.1	9.3	8.6	8.0	7.5	7.1	6.6	6.2
l_ (in ⁴)		68.1	78.6	89.6	101.4	114.0	127.6	142	158
l, (in ⁴)		42.5	48.2	54.2	60.7	67.5	74.9	82.6	90.8
DEFLECTION PARAMET		870	997	1132	1275	1428	1593	1768	1956
DEFLECTION PARAMET	ER (SWDP)	0.611	0.588	0.567	0.546	0.526	0.507	0.487	0.468
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)				UM NON				
	18.0	414.d	475.d	520	549	579	609	638	668
To be established by	18.5	382.d	437.d	490	517	545	573	601	628
the designer.	19.0	352.d	404.d	458.d	488	514	540	566	592
	19.5	326.d	373.d	424.d	460	485	509	534	558
	20.0	302.d	346.d	393.d	435	458	481	504	527
	20.5	280.d	321.d	365.d	411.d	433	455	477	498
	21.0	261.d	299.d	339.d	382.d	410	430	451	471
	21.5	243.d	279.d	316.d	356.d	388	408	427	446
	22.0	227.d	260.d	295.d	333.d	368	386	405	423
	22.5	212.d	243.d	276.d	311.d	348.d	367	384	401
	23.0	199.d	228.d	258.d	291.d	326.d	348	365	381
	23.5	186.d	213.d	242.d	273.d	306.d	331	346	362
	24.0	175.d	200.d	227.d	256.d	287.d	315	329	344
	24.5	164.d	188.d	214.d	241.d	270.d	299	313	327
	25.0	155.d	177.d	201.d	227.d	254.d	283.d	298	311
	25.5	146.d	167.d	190.d	214.d	239.d	267.d	284	296
	26.0	137.d	158.d	179.d	202.d	226.d	252.d	270	282
	26.5	130.d	149.d	169.d	190.d	213.d	238.d	258	269
	27.0	123.d	141.d	160.d	180.d	202.d	225.d	246	257
	27.5	116.d	133.d	151.d	170.d	191.d	213.d	235	245
	28.0	110.d	126.d	143.d	161.d	181.d	202.d	224.d	233
	28.5	104.d	120.d	136.d	153.d	171.d	191.d	212.d	223
	29.0	99.d	114.d	129.d	145.d	163.d	181.d	201.d	213
	29.5	94.d	108.d	122.d	138.d	155.d	172.d	191.d	203
	30.0	89.d	103.d	116.d	131.d	147.d	164.d	182.d	194
	30.5	85.d	98.d	111.d	125.d	140.d	156.d	173.d	185
	31.0	81.d	93.d	106.d	119.d	133.d	148.d	165.d	177
	31.5	77.d	89.d	101.d	113.d	127.d	142.d	157.d	169
	32.0	74.d	84.d	96.d	108.d	121.d	135.d	150.d	162
	32.5	70.d	81.d	92.d	103.d	116.d	129.d	143.d	155
	33.0	67.d	77.d	87.d	99.d	110.d	123.d	137.d	148
	33.5	64.d	74.d	84.d	94.d	106.d	118.d	131.d	141
	34.0	61.d	70.d	80.d	90.d	101.d	113.d	125.d	135
	34.5	59.d	67.d	77.d	86.d	97.d	108.d	120.d	129
	35.0	56.d	65.d	73.d	83.d	93.d	103.d	115.d	123
	35.5	54.d	62.d	70.d	79.d	89.d	99.d	110.d	118
	36.0	52.d	59.d	67.d	76.d	85.d	95.d	105.d	113

TABLE 2: CS210 NW		BAR						MPERIA	
Base Steel Thickness =	0.0495"							eel Deck	
# 11 Rebar								ncrete = 1	
SLAB WEIGHT (psf)		55.3	61.4	67.4	73.5	79.5	85.5	91.6	97.6
CONCRETE VOLUME (y		1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE		17.3	16.6	16.0	15.4	14.9	14.4	14.0	13.6
MAX. UNSHORED TWO		15.0	13.8	12.8	12.0	11.2	10.5	9.9	9.4
MAX. UNSHORED THRE	ee Span (ft)	17.0	15.7	14.6	13.6	12.7	12.0	11.3	10.7
<u>(in4)</u>		69.8	80.5	91.8	103.9	116.8	130.6	146	162
(in ⁴)		44.9	50.9	57.3	64.2	71.5	79.4	87.7	96.5
DEFLECTION PARAMET		902	1033	1173	1322	1481	1652	1834	2030
DEFLECTION PARAMET	ER (SWDP)	0.605	0.582	0.560	0.539	0.519	0.500	0.480	0.461
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIN	UM NON	INAL LO	AD (psf)		
	18.0	430.d	492.d	556	589	622	655	688	721
To be established by	18.5	396.d	453.d	515.d	554	585	617	648	679
he designer.	19.0	365.d	419.d	475.d	523	552	581	610	640
	19.5	338.d	387.d	439.d	493	521	548	576	604
	20.0	313.d	359.d	407.d	459.d	492	518	544	570
	20.5	291.d	333.d	378.d	426.d	466	490	515	539
	21.0	271.d	310.d	352.d	396.d	441	464	487	510
	21.5	252.d	289.d	328.d	369.d	414.d	440	462	483
	22.0	235.d	270.d	306.d	345.d	386.d	417	438	458
	22.5	220.d	252.d	286.d	322.d	361.d	396	416	435
	23.0	206.d	236.d	268.d	302.d	338.d	376	395	413
	23.5	193.d	221.d	251.d	283.d	317.d	354.d	375	393
	24.0	181.d	208.d	236.d	266.d	298.d	332.d	357	374
	24.5	170.d	195.d	222.d	250.d	280.d	312.d	340	356
	25.0	160.d	184.d	209.d	235.d	263.d	294.d	324	339
	25.5	151.d	173.d	196.d	221.d	248.d	277.d	307.d	323
	26.0	143.d	163.d	185.d	209.d	234.d	261.d	290.d	307
	26.5	135.d	154.d	175.d	197.d	221.d	247.d	274.d	293
	27.0	127.d	146.d	166.d	187.d	209.d	233.d	259.d	280
	27.5	121.d	138.d	157.d	177.d	198.d	221.d	245.d	267
	28.0	114.d	131.d	148.d	167.d	187.d	209.d	232.d	255
	28.5	108.d	124.d	141.d	159.d	178.d	198.d	220.d	244.0
	29.0	103.d	118.d	134.d	151.d	169.d	188.d	209.d	231.0
	29.5	98.d	112.d	127.d	143.d	160.d	179.d	198.d	220.0
	30.0	93.d	106.d	121.d	136.d	152.d	170.d	189.d	209.0
	30.5	88.d	101.d	115.d	129.d	145.d	162.d	180.d	199.0
	31.0	84.d	96.d	109.d	123.d	138.d	154.d	171.d	189.0
	31.5	80.d	92.d	104.d	117.d	132.d	147.d	163.d	180.0
	32.0	76.d	88.d	99.d	112.d	126.d	140.d	156.d	172.0
	32.5	73.d	84.d	95.d	107.d	120.d	134.d	148.d	164.0
	33.0	70.d	80.d	91.d	102.d	114.d	128.d	142.d	157.0
	33.5	67.d	76.d	87.d	98.d	109.d	122.d	136.d	150.0
	34.0	64.d	73.d	83.d	93.d	105.d	122.d	130.d	143.0
	34.5	61.d	70.d	79.d	89.d	100.d	117.d	124.d	137.0
	35.0	58.d	67.d	76.d	86.d	96.d	107.d	119.d	131.0
	35.5	56.d	64.d	73.d	82.d	92.d	107.d	113.d	126.0
	36.0	54.d	62.d	70.d	79.d	92.d 88.d	98.d	109.d	120.0

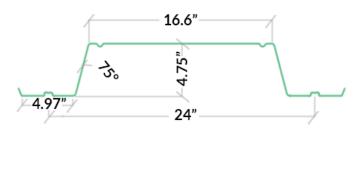
TABLE 2: CS210 NW		BAR						MPERIA	
Base Steel Thickness =	= 0.0435"							eel Deck	
# 11 Rebar								ncrete = 1	
SLAB WEIGHT (psf)		54.9	61.0	67.0	73.1	79.1	85.1	91.2	97.2
CONCRETE VOLUME ()	/d³/100ft²)	1.26	1.41	1.57	1.72	1.88	2.03	2.18	2.34
MAX. UNSHORED ONE	SPAN (ft)	15.2	14.6	14.0	13.5	13.0	12.6	12.2	11.8
MAX. UNSHORED TWO	D SPAN (ft)	11.7	10.8	10.0	9.4	8.8	8.2	7.8	7.4
MAX. UNSHORED THR	EE SPAN (ft)	13.3	12.3	11.4	10.6	10.0	9.4	8.8	8.4
l_ (in ⁴)		68.9	79.5	90.7	102.6	115.3	129.0	144	160
, (in ⁴)		43.7	49.5	55.7	62.4	69.5	77.1	85.1	93.6
DEFLECTION PARAMET	FER (SLDP)	885	1014	1151	1298	1454	1622	1801	1992
DEFLECTION PARAMET	FER (SWDP)	0.608	0.585	0.564	0.543	0.523	0.503	0.484	0.465
SLAB THICKNESS (in.)		10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0
SHORING	SPAN (ft)			MAXIM	UM NON	INAL LO	AD (psf)		
	18.0	422.d	483.d	538	569	601	632	664	695
To be established by	18.5	388.d	445.d	505.d	536	566	595	624	654
the designer.	19.0	359.d	411.d	466.d	505	533	561	589	616
	19.5	332.d	380.d	431.d	477	503	529	555	581
	20.0	307.d	352.d	400.d	451.d	475	500	524	549
	20.5	285.d	327.d	371.d	418.d	450	473	496	519
	21.0	266.d	304.d	345.d	389.d	426	447	469	491
	21.5	247.d	284.d	322.d	363.d	403	424	445	465
	22.0	231.d	265.d	300.d	339.d	379.d	402	422	441
	22.5	216.d	247.d	281.d	316.d	355.d	382	400	418
	23.0	202.d	232.d	263.d	296.d	332.d	362	380	397
	23.5	189.d	217.d	246.d	278.d	311.d	344	361	378
	24.0	178.d	204.d	231.d	261.d	292.d	326.d	343	359
	24.5	167.d	192.d	217.d	245.d	275.d	306.d	327	342
	25.0	157.d	180.d	205.d	231.d	259.d	288.d	311	325
	25.5	148.d	170.d	193.d	217.d	244.d	272.d	296	310
	26.0	140.d	160.d	182.d	205.d	230.d	256.d	282	295
	26.5	132.d	151.d	172.d	194.d	217.d	242.d	269.d	281
	27.0	125.d	143.d	163.d	183.d	205.d	229.d	254.d	268
	27.5	118.d	135.d	154.d	173.d	194.d	217.d	241.d	256
	28.0	112.d	128.d	146.d	164.d	184.d	205.d	228.d	244
	28.5	106.d	122.d	138.d	156.d	174.d	195.d	216.d	233
	29.0	100.d	116.d	131.d	148.d	166.d	185.d	205.d	223
	29.5	96.d	110.d	125.d	140.d	157.d	175.d	195.d	213
	30.0	91.d	104.d	118.d	134.d	150.d	167.d	185.d	204
	30.5	87.d	99.d	113.d	127.d	142.d	159.d	176.d	195
	31.0	83.d	95.d	107.d	127.d	136.d	155.d	168.d	186.d
	31.5	79.d	90.d	107.d	115.d	129.d	144.d	160.d	100.d
	32.0	75.d	90.d	98.d	110.d	129.d	137.d	153.d	169.d
	32.5	73.d	82.d	93.d	105.d	123.d	137.d	135.d	161.d
	33.0	68.d	78.d	89.d	105.d	110.u	125.d	139.d	154.d
	33.5	65.d	75.d	85.d	96.d	107.d	120.d	133.d	134.u 147.d
	33.5	63.d	75.d 72.d	85.d 81.d	96.d 92.d	107.d	120.d	133.d 127.d	147.d
	34.5	60.d	69.d	78.d	92.d 88.d	98.d	115.d	127.d	141.d 135.d
	35.0	57.d	66.d	75.d	84.d	98.d	105.d	122.d	135.d 129.d
	35.0						105.d 101.d		
	33.5	55.d	63.d	71.d	81.d	90.d	101.0	112.d	124.d

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. $I_{\!u}$ is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.





Revised: 06/02/2023


Valid Through: 06/30/2024

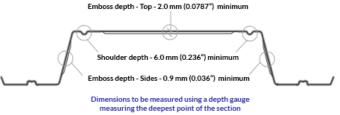

FIGURE 1 – ComSlab 210 Floor Deck

FIGURE 2 – ComSlab 120 Floor Deck

UES

Revised: 06/02/2023

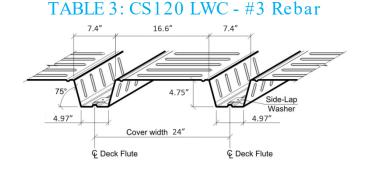

Valid Through: 06/30/2024

TABLE 3: CS120	LWC - #3 REI	BAR					IMPERIA	LUNITS
Base Steel Thickne	ss = 0.0375 in							
Rebar # 3					Light	Weight Co	ncrete = 1	10 lb/ft3
SLAB WEIGHT (psf)		36.7	39.0	43.6	48.1	52.7	57.3	61.9
CONCRETE VOLUM	IE (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED	L SPAN (ft)	12.6	12.3	11.7	11.3	10.9	10.5	10.2
MAX. UNSHORED 2	2 SPAN (ft)	13.3	12.8	11.8	11.0	10.3	9.60	9.10
MAX. UNSHORED 3	3 SPAN (ft)	14.8	14.4	13.4	12.5	11.6	10.9	10.3
I _u in ⁴		22.5	24.7	29.6	35.1	41.4	48.6	56.6
I _c in ⁴		9.40	10.1	11.7	13.5	15.4	17.4	19.6
DEFL. PARAMETER	(LLDP)	251	274	325	382	447	519	599
DEFL. PARAMETER	(SWDP)	1.24	1.20	1.12	1.05	0.971	0.900	0.834
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	if)	
To be established by the designer.	14.0	118	126	140	155	170	185	200
by the designer.	15.0	99	106	118	131	143	156	168
	16.0	84	89	100	110	121	131	142
	17.0	71	76	85	94	103	112	121
	18.0	61	64	72	80	87	95	103
	19.0	52	55	61	68	74	81	87
	20.0	44	47	52	58	63	69	74
	21.0			44	49	54	58	63
	22.0				41	45	49	53
	23.0						41	45
	24.0							
	25.0							
	26.0							
	27.0							
	28.0							
	29.0							
	30.0							

TABLE 3: CS120	LWC - #3 REI	BAR					IMPERIA	L UNITS
Base Steel Thickne	ss = 0.0495 in							
Rebar # 3					Light	Weight Co	oncrete = 1	10 lb/ft3
SLAB WEIGHT (psf)		37.4	39.7	44.3	48.9	53.5	58.1	62.7
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	SPAN (ft)	14.4	14.1	13.4	12.9	12.4	12.0	11.6
MAX. UNSHORED 2	SPAN (ft)	16.5	16.2	15.5	14.9	14.3	13.8	13.4
MAX. UNSHORED 3	SPAN (ft)	16.7	16.4	15.7	15.1	14.5	14.0	13.5
l¦in⁴		23.3	25.6	30.6	36.3	42.7	50.0	58.2
l _e in⁴		10.7	11.5	13.4	15.4	17.7	20.1	22.6
DEFL. PARAMETER	(LLDP)	267	292	346	407	475	551	636
DEFL. PARAMETER	(SWDP)	1.23	1.19	1.11	1.03	0.955	0.886	0.821
SLAB THICKNESS (i	n.)	7.25 7.50 8.0 8.50 9.0 9.50 1						10.0
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (p	if)	
To be established by the designer.	14.0	151	160	180	200	219	239	259
by the designer.	15.0	128	136	153	169	186	203	219
	16.0	109	116	130	144	159	173	187
	17.0	93	99	111	124	136	148	160
	18.0	80	85	96	106	117	127	138
	19.0	69	73	83	92	101	110	119
	20.0	59	63	71	79	87	95	103
	21.0	51	55	62	68	75	82	89
	22.0	44	47	53	59	65	71	77
	23.0		41	46	51	56	61	66
	24.0				44	48	53	57
	25.0					41	45	49
	26.0							42
	27.0							
	28.0							
	29.0							
	30.0							

TABLE 3: CS120	LWC - #3 REI	BAR					IMPERIA	LUNITS
Base Steel Thickne	ss = 0.0435 in.							
Rebar # 3				-	Light	Weight Co	ncrete = 1	10 lb/ft3
SLAB WEIGHT (psf)		37.1	39.4	43.9	48.5	53.1	57.7	62.3
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	SPAN (ft)	13.5	13.2	12.6	12.1	11.7	11.3	10.9
MAX. UNSHORED 2	SPAN (ft)	15.7	15.3	14.6	14.0	13.1	12.3	11.6
MAX. UNSHORED 3	SPAN (ft)	15.9	15.5	14.8	14.2	13.6	13.2	12.7
l _u in ⁴		22.9	25.1	30.0	35.6	42.0	49.2	57.4
l _e in ⁴		10.0	10.8	12.5	14.4	16.5	18.7	21.1
DEFL. PARAMETER	(LLDP)	259	283	335	394	460	534	617
DEFL. PARAMETER	(SWDP)	1.24	1.20	1.12	1.04	0.964	0.894	0.828
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	if)	
To be established by the designer.	14.0	135	143	160	178	195	212	229
by the designer.	15.0	114	121	135	150	165	179	194
	16.0	96	103	115	127	140	152	165
	17.0	82	88	98	109	119	130	141
	18.0	70	75	84	93	102	111	120
	19.0	60	64	72	80	88	95	103
	20.0	52	55	62	68	75	82	89
	21.0	44	47	53	59	65	70	76
	22.0		40	45	50	55	60	65
	23.0				43	47	51	56
	24.0					40	44	47
	25.0							
	26.0							
	27.0							
	28.0							
	29.0							
	30.0							

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. I_u is the uncracked moment if inertia based on equivalent steel
- 6. $I_{\mbox{\scriptsize c}}$ is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

UES

B

Revised: 06/02/2023

Valid Through: 06/30/2024

TABLE 3: CS120	LWC - #4 REI	BAR					IMPERIA	L UNITS
Base Steel Thickne	ss = 0.0375 in.							
Rebar # 4					Light	Weight Co	oncrete = 1	10 lb/ft3
SLAB WEIGHT (psf)		36.8	39.1	43.7	48.3	52.9	57.5	62.0
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	L SPAN (ft)	12.6	12.3	11.7	11.3	10.9	10.5	10.2
MAX. UNSHORED 2	SPAN (ft)	13.3	12.8	11.8	11.0	10.2	9.60	9.00
MAX. UNSHORED 3	SPAN (ft)	14.7	14.4	13.4	12.4	11.6	10.9	10.3
l _u in ⁴		22.8	25.1	30.0	35.6	42.0	49.3	57.4
l _e in ⁴		10.0	10.8	12.6	14.5	16.5	18.8	21.2
DEFL. PARAMETER	(LLDP)	258	282	335	394	461	535	618
DEFL. PARAMETER	(SWDP)	1.23	1.19	1.11	1.03	0.960	0.890	0.824
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	if)	
To be established by the designer.	14.0	142	151	168	185	202	220	237
by the designer.	15.0	120	127	142	157	171	186	201
	16.0	102	108	121	133	146	158	171
	17.0	87	93	103	114	125	135	146
	18.0	75	79	89	98	107	116	125
	19.0	64	68	76	84	92	100	107
	20.0	55	59	66	72	79	86	92
	21.0	48	51	56	62	68	74	80
	22.0	41	44	48	53	58	63	68
	23.0			42	46	50	54	59
	24.0					43	46	50
	25.0							42
	26.0							
	27.0							
	28.0							
	29.0							
	30.0							

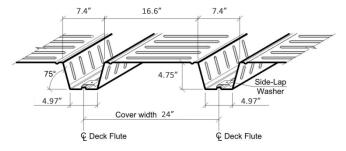

TABLE 3: CS120	LWC - #4 REI	BAR					IMPERIA	L UNITS			
Base Steel Thickne	ss = 0.0495 in										
Rebar # 4					Light	Weight Co	ncrete = 1	10 lb/ft3			
SLAB WEIGHT (psf)		37.6	39.9	44.5	49.1	53.6	58.2	62.8			
CONCRETE VOLUM	E (yd³/100ft²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99			
MAX. UNSHORED 1	SPAN (ft)	14.4	14.0	13.4	12.9	12.4	12.0	11.6			
MAX. UNSHORED 2	SPAN (ft)	16.5	16.2	15.5	14.9	14.3	13.8	13.4			
MAX. UNSHORED 3	SPAN (ft)	16.7	16.4	15.7	15.1	14.5	14.0	13.5			
l _u in ⁴		23.6	25.9	31.0	36.8	43.3	50.7	59.0			
l _e in ⁴		11.3	12.2	14.2	16.4	18.8	21.4	24.2			
DEFL. PARAMETER	(LLDP)	274	300	355	418	488	567	654			
DEFL. PARAMETER	(SWDP)	1.22	1.17	1.09	1.02	0.945	0.876	0.812			
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0			
SHORING	SPAN (ft)	MAXIMUM SPECIFIED LOADS (psf)									
o be established by the designer.	14.0	174	185	207	229	251	273	296			
by the designer.	15.0	148	157	176	195	214	233	251			
	16.0	126	135	151	167	183	199	215			
	17.0	109	116	130	144	157	171	185			
	18.0	94	100	112	124	136	148	160			
	19.0	81	87	97	108	118	129	139			
	20.0	71	75	84	94	103	112	121			
	21.0	62	66	73	81	89	97	105			
	22.0	54	57	64	71	78	85	92			
	23.0	47	50	56	62	68	74	80			
	24.0	41	43	48	54	59	64	70			
	25.0			42	47	51	56	60			
	26.0				40	44	48	52			
	27.0						42	45			
	28.0										
	29.0										
	30.0										

TABLE 3: CS120	LWC - #4 REI	BAR					IMPERIA	L UNITS
Base Steel Thickne	ss = 0.0435 in.							
Rebar # 4					Light	Weight Co	oncrete = 1	10 lb/ft3
SLAB WEIGHT (psf)		37.2	39.5	44.1	48.7	53.3	57.8	62.4
CONCRETE VOLUM	E (yd³/100ft²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	SPAN (ft)	13.5	13.2	12.6	12.1	11.7	11.3	10.9
MAX. UNSHORED 2	SPAN (ft)	15.7	15.3	14.6	14.0	13.1	12.3	11.6
MAX. UNSHORED 3 SPAN (ft)		15.8	15.4	14.8	14.2	13.6	13.2	12.7
l _u in ⁴		23.2	25.5	30.5	36.2	42.6	49.9	58.2
l _c in ⁴		10.6	11.5	13.3	15.4	17.6	20.0	22.6
DEFL PARAMETER (LLDP) 266 290 344 405 474 550						635		
DEFL. PARAMETER	(SWDP)	1.23	1.18	1.10	1.03	0.953	0.884	0.819
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)		N	MUMIXAN	SPECIFIED	LOADS (ps	sf)	-
To be established by the designer.	14.0	158	168	188	207	227	247	266
by the designer.	15.0	134	142	159	176	193	209	226
	16.0	114	122	136	150	164	179	193
	17.0	98	104	117	129	141	153	166
	18.0	85	90	100	111	122	132	143
	19.0	73	78	87	96	105	114	123
	20.0	63	67	75	83	91	99	107
	21.0	55	58	65	72	79	86	92
	22.0	47	50	56	62	68	74	80
	23.0	41	44	49	54	59	64	69
	24.0			42	46	51	55	60
	25.0					44	48	51
	26.0						41	44
	27.0							
	28.0							
	29.0							
	30.0							

NOTES:

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. Iu is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

TABLE 3: CS120 LWC - #4 Rebar

UES

Revised: 06/02/2023

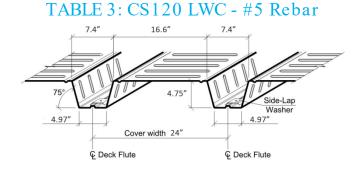

Valid Through: 06/30/2024

TABLE 3: CS120	LWC - #5 REI	BAR		ABLE 3: CS120 LWC - #5 REBAR IMPERIAL UNITS										
Base Steel Thickne	ss = 0.0375 in.													
Rebar # 5					Light	Weight Co	oncrete = 1	10 lb/ft3						
SLAB WEIGHT (psf)		37.0	39.3	43.9	48.5	53.1	57.6	62.2						
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99						
MAX. UNSHORED 1	l SPAN (ft)	12.5	12.2	11.7	11.2	10.8	10.5	10.1						
MAX. UNSHORED 2	SPAN (ft)	13.3	12.7	11.8	10.9	10.2	9.60	9.00						
MAX. UNSHORED 3	SPAN (ft)	14.7	14.4	13.4	12.4	11.6	10.9	10.3						
l₀ in⁴		23.2	25.5	30.5	36.2	42.7	50.1	58.4						
l _e in ⁴		10.7	11.6	13.5	15.7	18.0	20.4	23.1						
DEFL. PARAMETER	(LLDP)	267	292	347	408	478	555	641						
DEFL. PARAMETER	1.22	1.18	1.10	1.02	0.947	0.878	0.813							
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0						
SHORING	SPAN (ft)	MAXIMUM SPECIFIED LOADS (psf)												
To be established by the designer.	14.0	171	182	202	223	243	264	284						
by the designer.	15.0	146	154	172	189	207	224	241						
	16.0	125	132	147	162	177	192	207						
	17.0	107	114	126	139	152	165	178						
	18.0	93	98	109	120	131	142	153						
	19.0	80	85	95	104	114	123	133						
	20.0	70	74	82	91	99	107	115						
	21.0	61	64	72	79	86	93	100						
	22.0	53	56	62	69	75	81	87						
	23.0	46	49	54	60	65	70	76						
	24.0	40	42	47	52	56	61	66						
	25.0			41	45	49	53	57						
	26.0					42	46	49						
	27.0							42						
	28.0													
	29.0													
	30.0													

TABLE 3: CS120	LWC - #5 REI	BAR					IMPERIA	L UNITS
Base Steel Thickne	ss = 0.0495 in.							
Rebar # 5					Light	Weight Co	ncrete = 1	10 lb/ft3
SLAB WEIGHT (psf)		37.8	40.1	44.7	49.2	53.8	58.4	63.0
CONCRETE VOLUM	E (yd³/100ft²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	SPAN (ft)	14.4	14.0	13.4	12.9	12.4	12.0	11.6
MAX. UNSHORED 2	SPAN (ft)	16.5	16.2	15.5	14.9	14.3	13.8	13.4
MAX. UNSHORED 3	SPAN (ft)	16.7	16.3	15.7	15.0	14.5	14.0	13.5
l₀in⁴		24.0	26.3	31.5	37.4	44.0	51.5	60.0
l _e in⁴		11.9	12.9	15.1	17.5	20.1	22.9	26.0
DEFL. PARAMETER	282	309	366	431	504	586	676	
DEFL. PARAMETER	(SWDP)	1.20	1.16	1.08	1.01	0.933	0.865	0.801
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)		r.	IAXIMUM	SPECIFIED	LOADS (ps	if)	
To be established	14.0	203	215	240	266	291	316	342
by the designer.	15.0	173	184	205	227	248	270	292
	16.0	148	158	176	195	213	232	251
	17.0	128	136	152	168	184	201	217
	18.0	111	118	132	146	160	174	188
	19.0	97	103	115	127	140	152	164
	20.0	85	90	101	111	122	133	143
	21.0	74	79	88	98	107	116	126
	22.0	65	69	77	86	94	102	110
	23.0	57	61	68	75	82	90	97
	24.0	50	53	60	66	72	79	85
	25.0	44	47	52	58	64	69	75
	26.0		41	46	51	56	61	66
	27.0			40	44	49	53	57
	28.0					43	46	50
	29.0						40	43
	30.0							

TABLE 3: CS120	LWC - #5 RE	BAR					IMPERIA	L UNITS
Base Steel Thickne	ss = 0.0435 in							
Rebar # 5					Light	Weight Co	oncrete = 1	10 lb/ft3
SLAB WEIGHT (psf)		37.4	39.7	44.3	48.9	53.4	58.0	62.6
CONCRETE VOLUM	E (yd³/100ft²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	SPAN (ft)	13.5	13.2	12.6	12.1	11.6	11.2	10.9
MAX. UNSHORED 2	SPAN (ft)	15.6	15.2	14.6	14.0	13.1	12.3	11.6
MAX. UNSHORED 3	SPAN (ft)	15.8	15.4	14.7	14.1	13.6	13.1	12.7
ljin ⁴		23.5	25.8	31.0	36.8	43.3	50.8	59.1
l _e in ⁴		11.3	12.2	14.3	16.5	19.0	21.6	24.5
DEFL. PARAMETER (LLDP) 274			300	356	419	490	569	658
DEFL. PARAMETER	DEFL. PARAMETER (SWDP) 1.21			1.09	1.01	0.941	0.872	0.808
SLAB THICKNESS (i	n.)	7.25	25 7.50 8.0 8.50 9.0 9.50 10.0					
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	sf)	
To be established by the designer.	14.0	187	199	221	244	267	290	313
by the designer.	15.0	159	169	189	208	228	247	267
	16.0	137	145	162	178	195	212	229
	17.0	118	125	140	154	168	183	197
	18.0	102	108	121	133	146	158	171
	19.0	89	94	105	116	127	138	149
	20.0	77	82	92	101	111	120	129
	21.0	68	72	80	88	97	105	113
	22.0	59	63	70	77	84	92	99
	23.0	52	55	61	67	74	80	86
	24.0	45	48	53	59	64	70	76
	25.0		42	47	51	56	61	66
	26.0			41	45	49	53	57
	27.0					43	46	50
	28.0							43
	29.0							
	30.0							

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. I_u is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

UES

Revised: 06/02/2023

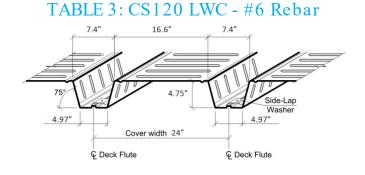

Valid Through: 06/30/2024

TABLE 3: CS120	LWC - #6 REI	BAR					IMPERIA	LUNITS
Base Steel Thickne	ss = 0.0375 in.							
Rebar # 6					Light	Weight Co	oncrete = 1	10 lb/ft3
SLAB WEIGHT (psf)		37.3	39.5	44.1	48.7	53.3	57.9	62.5
CONCRETE VOLUM	E (yd³/100ft²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	L SPAN (ft)	12.5	12.2	11.7	11.2	10.8	10.5	10.1
MAX. UNSHORED 2	2 SPAN (ft)	13.2	12.7	11.7	10.9	10.2	9.60	9.00
MAX. UNSHORED 3 SPAN (ft)		14.7	14.3	13.3	12.4	11.6	10.9	10.2
l _u in ⁴		23.6	25.9	31.1	36.9	43.6	51.1	59.5
l _e in ⁴		11.5	12.5	14.6	17.0	19.5	22.3	25.3
DEFL. PARAMETER	(LLDP)	276	302	360	424	497	577	667
DEFL. PARAMETER (SWDP) 1.21 1.16 1.08 1.01 0.933 0.864 0						0.801		
SLAB THICKNESS (i	LAB THICKNESS (in.) 7.25 7.50 8.0 8.50 9.0 9.50 10							10.0
SHORING	SPAN (ft)		N	MUMIXAN	SPECIFIED	LOADS (ps	sf)	
To be established by the designer.	14.0	206	218	243	267	291	316	340
by the designer.	15.0	176	186	207	228	249	269	290
	16.0	151	160	178	196	214	232	249
	17.0	131	138	154	169	185	200	216
	18.0	114	120	134	147	160	174	187
	19.0	99	105	117	128	140	152	163
	20.0	87	92	102	112	122	133	143
	21.0	76	81	89	98	107	116	125
	22.0	67	71	79	86	94	102	110
	23.0	59	62	69	76	83	90	96
	24.0	52	55	61	67	73	79	85
	25.0	45	48	53	59	64	69	74
	26.0		42	47	51	56	61	65
	27.0			41	45	49	53	57
	28.0					43	46	50
	29.0						40	43
	30.0							

TABLE 3: CS120	LWC - #6 REI	BAR					IMPERIA	LUNITS	
Base Steel Thickne	ss = 0.0495 in.								
Rebar # 6					Light	Weight Co	ncrete = 1	10 lb/ft3	
SLAB WEIGHT (psf)		38.0	40.3	44.9	49.5	54.1	58.6	63.2	
CONCRETE VOLUM	E (yd³/100ft²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99	
MAX. UNSHORED 1	SPAN (ft)	14.3	14.0	13.4	12.8	12.4	11.9	11.6	
MAX. UNSHORED 2	SPAN (ft)	16.5	16.1	15.5	14.8	14.3	13.8	13.4	
MAX. UNSHORED 3	SPAN (ft)	16.6	16.3	15.6	15.0	14.4	13.9	13.5	
lj in ⁴		24.3	26.7	32.0	38.0	44.8	52.5	61.1	
l _e in ⁴		12.7	13.8	16.1	18.8	21.6	24.7	28.1	
DEFL. PARAMETER	(LLDP)	291	319	379	447	523	607	701	
DEFL. PARAMETER	(SWDP)	1.19	1.15	1.07	0.992	0.920	0.853	0.790	
SLAB THICKNESS (i	n.)	7.25	5 7.50 8.0 8.50 9.0 9.50 10.0						
SHORING	SPAN (ft)		N	MUMIXAN	SPECIFIED	LOADS (ps	sf)		
To be established by the designer.	14.0	236	251	280	309	338	368	397	
by the designer.	15.0	202	215	240	265	290	315	340	
	16.0	174	185	206	228	250	271	293	
	17.0	151	160	179	198	216	235	254	
	18.0	132	140	156	172	189	205	221	
	19.0	115	122	137	151	165	179	194	
	20.0	101.d	107	120	133	145	158	170	
	21.0	87.d	95	106	117	128	139	150	
	22.0	76.d	83.d	93	103	113	123	132	
	23.0	66.d	73.d	83	91	100	109	117	
	24.0	58.d	64.d	73	81	88	96	104	
	25.0	52.d	57.d	65	71	78	85	92	
	26.0	46.d	50.d	57	63	69	75	81	
	27.0	41.d	45.d	51	56	61	67	72	
	28.0		40	45	49	54	59	64	
	29.0				44	48	52	56	
	30.0					42	46	49	

TABLE 3: CS120							IMPERIA	L UNITS	
Base Steel Thickne Rebar # 6	ss = 0.0435 in.				Light	Weight Co	ncrete = 1	10 lb/ 0 2	
SLAB WEIGHT (psf)		37.6	39.9	44 5	49 1	53 7	58.3	62.8	
CONCRETE VOLUM	,	1.15	1.22	1.38	1.53	1.69	1.84	1.99	
MAX. UNSHORED 1		13.5	13.1	12.6	12.1	11.6	11.2	10.9	
MAX. UNSHORED 2 SPAN (ft)		15.6	15.2	14.5	14.0	13.1	12.3	11.6	
MAX. UNSHORED 3 SPAN (ft)		15.8	15.4	14.7	14.1	13.6	13.1	12.7	
l _u in ⁴		23.9	26.3	31.5	37.4	44.1	51.7	60.2	
l _e in ⁴		12.0	13.1	15.3	17.8	20.5	23.5	26.6	
DEFL. PARAMETER (LLDP)		283	310	369	435	509	591	683	
DEFL. PARAMETER	(SWDP)	1.20	1.16	1.08	1.00	0.927	0.859	0.796	
SLAB THICKNESS (i	n.)	7.25							
SHORING	SPAN (ft)	MAXIMUM SPECIFIED LOADS (psf)							
To be established by the designer.	14.0	221	235	261	288	315	342	369	
by the designer.	15.0	189	201	223	246	269	292	315	
	16.0	163	173	192	212	232	251	271	
	17.0	141	150	167	184	201	218	235	
	18.0	123	130	145	160	175	189	204	
	19.0	107	114	127	140	153	166	179	
	20.0	94	100	111	122	134	145	157	
	21.0	83	88	98	108	118	128	138	
	22.0	73	77	86	95	104	112	121	
	23.0	64	68	76	84	91	99	107	
	24.0	57	60	67	74	81	87	94	
	25.0	50	53	59	65	71	77	83	
	26.0	44	47	52	57	63	68	73	
	27.0		41	46	51	55	60	65	
	28.0			40	44	49	53	57	
	29.0					43	46	50	
-	30.0						40	43	

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. I_u is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

UES

R

Revised: 06/02/2023

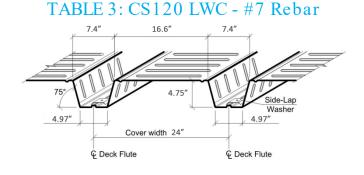

Valid Through: 06/30/2024

TABLE 3: CS120	LWC - #7 RE	BAR					IMPERIA	L UNITS
Base Steel Thickne	ss = 0.0375 in							
Rebar # 7					Light	Weight Co	oncrete = 1	10 lb/ft3
SLAB WEIGHT (psf)		37.5	39.8	44.4	49.0	53.6	58.1	62.7
CONCRETE VOLUM	E (yd³/100ft²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED	l SPAN (ft)	12.5	12.2	11.7	11.2	10.8	10.4	10.1
MAX. UNSHORED 2	2 SPAN (ft)	13.2	12.6	11.7	10.9	10.2	9.50	9.00
MAX. UNSHORED 3	SPAN (ft)	14.7	14.3	13.3	12.4	11.5	10.8	10.2
l₀ in⁴		24.0	26.4	31.7	37.7	44.5	52.1	60.7
l _e in ⁴	12.3	13.4	15.8	18.4	21.3	24.4	27.7	
DEFL. PARAMETER	DEFL PARAMETER (LLDP) 286 313 374 441 517 602						696	
DEFL PARAMETER (SWDP) 1.19 1.15 1.07 0.991 0.919 0.851						0.788		
SLAB THICKNESS (i	n.)	7.25 7.50 8.0 8.50 9.0 9.50 10.						10.0
SHORING								
To be established by the designer.	14.0	245	260	289	318	346	375	404
by the designer.	15.0	210	222	247	272	297	321	346
	16.0	181	192	213	234	256	277	299
	17.0	157	166	185	204	222	241	259
	18.0	136.d	145	161	178	194	210	226
	19.0	116.d	127.d	141	156	170	184	198
	20.0	99.d	109.d	124	137	149	162	174
	21.0	86.d	94.d	110	121	132	143	154
	22.0	75.d	82.d	97	107	116	126	136
	23.0	65.d	72.d	85.d	95	103	112	120
	24.0	57.d	63.d	75.d	84	91	99	107
	25.0	51.d	56.d	66.d	74	81	88	94
	26.0	45.d	50.d	59.d	66	72	78	84
	27.0	40.d	44.d	53.d	59	64	69	74
	28.0			47	52	56	61	66
	29.0			42	46	50	54	58
	30.0				40	44	48	51

TABLE 3: CS120	LWC - #7 REI	BAR					IMPERIA	L UNITS	
Base Steel Thickne	ss = 0.0495 in								
Rebar # 7					Light	Weight Co	oncrete = 1	10 lb/ft3	
SLAB WEIGHT (psf)		38.3	40.6	45.2	49.7	54.3	58.9	63.5	
CONCRETE VOLUM	E (yd³/100ft²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99	
MAX. UNSHORED 1	SPAN (ft)	14.3	14.0	13.4	12.8	12.3	11.9	11.6	
MAX. UNSHORED 2	SPAN (ft)	16.4	16.1	15.4	14.8	14.3	13.8	13.3	
MAX. UNSHORED 3 SPAN (ft)		16.6	16.3	15.6	15.0	14.4	13.9	13.5	
l _u in ⁴		24.7	27.2	32.6	38.8	45.7	53.5	62.3	
l _e in ⁴		13.4	14.6	17.2	20.1	23.2	26.7	30.3	
DEFL. PARAMETER	(LLDP)	300	329	392	463	542	631	729	
DEFL. PARAMETER	(SWDP)	1.18	1.14	1.06	0.979	0.907	0.840	0.778	
SLAB THICKNESS (i	n.)	7.25	.25 7.50 8.0 8.50 9.0 9.50 10.0						
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	sf)		
To be established by the designer.	14.0	274	291	325	359	392	426	460	
by the designer.	15.0	235	250	279	308	337	366	395	
	16.0	203	216	241	266	291	316	341	
	17.0	170.d	186.d	209	231	253	275	297	
	18.0	143.d	157.d	183	202	221	240	259	
	19.0	122.d	133.d	159.d	178	194	211	228	
	20.0	104.d	114.d	136.d	157	171	186	201	
	21.0	90.d	99.d	118.d	139	152	165	178	
	22.0	78.d	86.d	102.d	121.d	135	146	158	
	23.0	69.d	75.d	90.d	106.d	120	130	140	
	24.0	60.d	66.d	79.d	93.d	107	116	125	
	25.0	53.d	59.d	70.d	82.d	95	103	112	
	26.0	47.d	52.d	62.d	73.d	85	92	100	
	27.0	42.d	46.d	55.d	65.d	76	82	89	
	28.0		42.d	50.d	59.d	68	73	79	
	29.0			45.d	53.d	60	65	71	
	30.0			40.d	48.d	54	58	63	

TABLE 3: CS120	LWC - #7 RE	BAR					IMPERIA	L UNITS
Base Steel Thickne	ss = 0.0435 in							
Rebar # 7					Light	Weight Co	oncrete = 1	10 lb/ft3
SLAB WEIGHT (psf)		37.9	40.2	44.8	49.4	53.9	58.5	63.1
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	l SPAN (ft)	13.4	13.1	12.5	12.0	11.6	11.2	10.9
MAX. UNSHORED 2	2 SPAN (ft)	15.6	15.2	14.5	13.9	13.0	12.2	11.5
MAX. UNSHORED 3 SPAN (ft)		15.7	15.4	14.7	14.1	13.6	13.1	12.7
l _u in ⁴		24.3	26.8	32.1	38.2	45.0	52.8	61.4
l _e in ⁴		12.8	14.0	16.5	19.2	22.2	25.5	29.0
DEFL. PARAMETER	(LLDP)	292	321	382	451	529	615	711
DEFL. PARAMETER	(SWDP)	1.19	1.15	1.06	0.986	0.914	0.846	0.783
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	sf)	
To be established	14.0	260	276	307	338	370	401	432
by the designer.	15.0	223	236	263	290	317	344	370
	16.0	192	204	227	250	273	297	320
	17.0	165.d	177	197	217	238	258	278
	18.0	139.d	153.d	172	190	208	225	243
	19.0	118.d	130.d	151	167	182	198	213
	20.0	102.d	111.d	133.d	147	160	174	188
	21.0	88.d	96.d	115.d	130	142	154	166
	22.0	76.d	84.d	100.d	115	126	136	147
	23.0	67.d	73.d	87.d	102	111	121	130
	24.0	59.d	64.d	77.d	91	99	107	116
	25.0	52.d	57.d	68.d	80.d	88	96	103
	26.0	46.d	51.d	60.d	71.d	78	85	92
	27.0	41.d	45.d	54.d	64.d	70	76	82
	28.0		41.d	48.d	57	62	67	73
	29.0			44.d	50	55	60	64
	30.0				45	49	53	57

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. Iu is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

UES

Revised: 06/02/2023

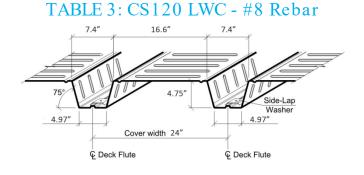

Valid Through: 06/30/2024

TABLE 3: CS120	LWC - #8 RE	BAR					IMPERIA	LUNITS	
Base Steel Thickne	ss = 0.0375 in								
Rebar # 8					Light	Weight Co	ncrete = 1	10 lb/ft3	
SLAB WEIGHT (psf)		37.8	40.1	44.7	49.3	53.9	58.5	63.0	
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99	
MAX. UNSHORED 1	L SPAN (ft)	12.5	12.2	11.6	11.2	10.8	10.4	10.1	
MAX. UNSHORED 2	2 SPAN (ft)	13.1	12.6	11.6	10.8	10.1	9.50	9.00	
MAX. UNSHORED 3	3 SPAN (ft)	14.6	14.3	13.2	12.3	11.5	10.8	10.2	
l _u in ⁴		24.4	26.9	32.3	38.5	45.4	53.3	62.1	
l _c in⁴		13.2	14.4	17.0	19.9	23.1	26.5	30.2	
DEFL. PARAMETER	(LLDP)	296	325	388	459	539	628	726	
DEFL. PARAMETER	(SWDP)	1.18	1.14	1.06	0.977	0.904	0.837	0.775	
SLAB THICKNESS (in.) 7.25 7.50 8.0 8.50 9.0 9.50 10							10.0		
SHORING	SPAN (ft)		MAXIMUM SPECIFIED LOADS (psf)						
To be established by the designer.	14.0	288	305	339	374	408	442	476	
by the designer.	15.0	243.d	262	291	321	350	379	409	
	16.0	200.d	220.d	252	277	303	328	353	
	17.0	167.d	184.d	219	241	264	286	308	
	18.0	141.d	155.d	185.d	211	231	250	269	
	19.0	120.d	131.d	157.d	186	203	220	237	
	20.0	103.d	113.d	135.d	159.d	179	194	209	
	21.0	89.d	97.d	116.d	138.d	159	172	185	
	22.0	77.d	85.d	101.d	120.d	141.d	153	165	
	23.0	67.d	74.d	89.d	105.d	123.d	136	147	
	24.0	59.d	65.d	78.d	92.d	108.d	121	131	
	25.0	53.d	58.d	69.d	82.d	96.d	109	117	
	26.0	47.d	51.d	61.d	73.d	85.d	97	104	
	27.0	42.d	46.d	55.d	65.d	76.d	87	93	
	28.0		41.d	49.d	58.d	68.d	78	84	
	29.0			44.d	52.d	61.d	69	75	
	30.0				47.d	55.d	62	67	

TABLE 3: CS120	LWC - #8 RE	BAR				l	IMPERIA	L UNITS	
Base Steel Thickne	ss = 0.0495 in								
Rebar # 8					Light	Weight Co	ncrete = 1	10 lb/ft3	
SLAB WEIGHT (psf)		38.6	40.9	45.5	50.1	54.6	59.2	63.8	
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99	
MAX. UNSHORED 1	SPAN (ft)	14.3	13.9	13.3	12.8	12.3	11.9	11.5	
MAX. UNSHORED 2	SPAN (ft)	16.4	16.1	15.4	14.8	14.2	13.8	13.3	
MAX. UNSHORED 3	SPAN (ft)	16.6	16.2	15.6	15.0	14.4	13.9	13.5	
l₀in⁴		25.1	27.7	33.2	39.5	46.6	54.6	63.6	
l _e in⁴		14.2	15.5	18.4	21.5	25.0	28.7	32.8	
DEFL. PARAMETER	ARAMETER (LLDP) 310 340 406 480 563 656						758		
DEFL. PARAMETER	(SWDP)	1.17	1.13	1.04	0.966	0.894	0.827	0.765	
SLAB THICKNESS (i	n.)	7.25	7.50 8.0 8.50 9.0 9.50 10.0						
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	f)		
To be established by the designer.	14.0	314.d	335	374	413	452	491	530	
by the designer.	15.0	255.d	280.d	322	355	389	422	456	
	16.0	210.d	231.d	275.d	308	337	366	395	
	17.0	175.d	192.d	230.d	268	294	319	344	
	18.0	148.d	162.d	193.d	229.d	257	280	302	
	19.0	125.d	138.d	164.d	195.d	227	247	266	
	20.0	108.d	118.d	141.d	167.d	196.d	218	236	
	21.0	93.d	102.d	122.d	144.d	169.d	194	209	
	22.0	81.d	89.d	106.d	125.d	147.d	171.d	186	
	23.0	71.d	78.d	93.d	110.d	129.d	150.d	166	
	24.0	62.d	68.d	82.d	97.d	113.d	132.d	149	
	25.0	55.d	60.d	72.d	85.d	100.d	117.d	134	
	26.0	49.d	54.d	64.d	76.d	89.d	104.d	120.d	
	27.0	44.d	48.d	57.d	68.d	79.d	93.d	107.d	
	28.0		43.d	51.d	61.d	71.d	83.d	96.d	
	29.0			46.d	55.d	64.d	75.d	86.d	
	30.0			42.d	49.d	58.d	67.d	78.d	

TABLE 3: CS120							IMPERIA	L UNITS
Base Steel Thickne	ss = 0.0435 in.							
Rebar # 8					Light	Weight Co	oncrete = 1	10 lb/ft
SLAB WEIGHT (psf)		38.2	40.5	45.1	49.7	54.3	58.8	63.4
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	L SPAN (ft)	13.4	13.1	12.5	12.0	11.6	11.2	10.8
MAX. UNSHORED 2	2 SPAN (ft)	15.5	15.2	14.5	13.9	13.0	12.2	11.5
MAX. UNSHORED 3	3 SPAN (ft)	15.7	15.3	14.7	14.1	13.5	13.1	12.7
l _u in ⁴		24.7	27.2	32.7	39.0	46.0	53.9	62.8
l _e in ⁴		13.7	14.9	17.7	20.7	24.0	27.6	31.4
DEFL. PARAMETER (LLDP)		302	332	396	469	550	641	741
DEFL. PARAMETER (SWDP)		1.18	1.13	1.05	0.972	0.900	0.833	0.77
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)	MAXIMUM SPECIFIED LOADS (psf)						
To be established by the designer.	14.0	302	320	357	394	430	467	503
by the designer.	15.0	249.d	273.d	307	338	370	401	432
	16.0	205.d	225.d	265	293	320	347	374
	17.0	171.d	188.d	224.d	255	279	302	326
	18.0	144.d	158.d	189.d	223	244	265	286
	19.0	122.d	134.d	161.d	190.d	215	233	252
	20.0	105.d	115.d	138.d	163.d	190	206	222
	21.0	91.d	99.d	119.d	141.d	165.d	183	197
	22.0	79.d	87.d	103.d	122.d	144.d	163	176
	23.0	69.d	76.d	91.d	107.d	126.d	145	157
	24.0	61.d	67.d	80.d	94.d	111.d	129.d	140
	25.0	54.d	59.d	70.d	83.d	98.d	114.d	125
	26.0	48.d	52.d	63.d	74.d	87.d	101.d	112
	27.0	43.d	47.d	56.d	66.d	78.d	90.d	101
	28.0		42.d	50.d	59.d	70.d	81.d	90
	29.0			45.d	53.d	63.d	73.d	81
	30.0			41.d	48.d	57.d	66.d	72

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. I_u is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

UES

Revised: 06/02/2023

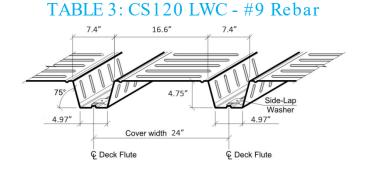

Valid Through: 06/30/2024

TABLE 3: CS120	LWC - #9 REI	BAR					IMPERIA	LUNITS	
Base Steel Thickne	ss = 0.0375 in								
Rebar # 9					Light	Weight Co	ncrete = 1	10 lb/ft3	
SLAB WEIGHT (psf)		38.2	40.5	45.1	49.7	54.2	58.8	63.4	
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99	
MAX. UNSHORED 1	l SPAN (ft)	12.4	12.1	11.6	11.2	10.8	10.4	10.1	
MAX. UNSHORED 2	2 SPAN (ft)	13.0	12.5	11.6	10.8	10.1	9.50	8.90	
MAX. UNSHORED 3 SPAN (ft)		14.6	14.2	13.2	12.3	11.5	10.8	10.1	
l _u in ⁴		24.8	27.4	33.0	39.3	46.4	54.5	63.5	
l _e in ⁴		14.0	15.4	18.3	21.5	25.0	28.8	32.9	
DEFL. PARAMETER	(LLDP)	306	336	403	478	562	655	758	
DEFL. PARAMETER	(SWDP)	1.17	1.13	1.04	0.963	0.891	0.824	0.762	
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0	
SHORING	SPAN (ft)		MAXIMUM SPECIFIED LOADS (psf)						
To be established by the designer.	14.0	309.d	340.d	395	436	476	516	557	
by the designer.	15.0	252.d	277.d	332.d	375	409	444	479	
	16.0	207.d	228.d	273.d	324.d	355	385	415	
	17.0	173.d	190.d	228.d	270.d	310	336	362	
	18.0	146.d	160.d	192.d	228.d	268.d	295	318	
	19.0	124.d	136.d	163.d	194.d	228.d	260	281	
	20.0	106.d	117.d	140.d	166.d	195.d	227.d	249	
	21.0	92.d	101.d	121.d	143.d	169.d	196.d	221	
	22.0	80.d	88.d	105.d	125.d	147.d	171.d	197	
	23.0	70.d	77.d	92.d	109.d	128.d	150.d	173.d	
	24.0	61.d	68.d	81.d	96.d	113.d	132.d	152.d	
	25.0	54.d	60.d	72.d	85.d	100.d	116.d	135.d	
	26.0	48.d	53.d	64.d	76.d	89.d	104.d	120.d	
	27.0	43.d	47.d	57.d	67.d	79.d	92.d	107.d	
	28.0		43.d	51.d	60.d	71.d	83.d	96.d	
	29.0			46.d	54.d	64.d	75.d	86.d	
	30.0			41.d	49.d	58.d	67.d	78.d	

TABLE 3: CS120	TABLE 3: CS120 LWC - #9 REBAR IMPERIAL UNITS									
Base Steel Thickne	ss = 0.0495 in									
Rebar # 9					Light	Weight Co	ncrete = 1	10 lb/ft3		
SLAB WEIGHT (psf)		39.0	41.3	45.8	50.4	55.0	59.6	64.2		
CONCRETE VOLUM	E (yd³/100ft²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99		
MAX. UNSHORED 1	SPAN (ft)	14.2	13.9	13.3	12.8	12.3	11.9	11.5		
MAX. UNSHORED 2	MAX. UNSHORED 2 SPAN (ft)		16.0	15.4	14.8	14.2	13.7	13.3		
MAX. UNSHORED 3	SPAN (ft)	16.5	16.2	15.5	14.9	14.4	13.9	13.4		
l _u in ⁴		25.6	28.2	33.9	40.3	47.6	55.8	65.0		
l _e in ⁴		15.1	16.5	19.6	23.0	26.8	30.9	35.3		
DEFL. PARAMETER	DEFL. PARAMETER (LLDP) 320			421	498	585	682	789		
DEFL. PARAMETER	DEFL. PARAMETER (SWDP) 1.16 1.12 1.03 0.953 0						0.814	0.753		
SLAB THICKNESS (i	n.)	7.25 7.50 8.0 8.50 9.0 9.50 10.0								
SHORING	SPAN (ft)		MAXIMUM SPECIFIED LOADS (psf)							
To be established by the designer.	14.0	323.d	356.d	426.d	474	519	564	610		
by the designer.	15.0	263.d	289.d	346.d	408	447	486	525		
	16.0	217.d	238.d	285.d	338.d	388	422	455		
	17.0	181.d	199.d	238.d	282.d	331.d	368	398		
	18.0	152.d	167.d	200.d	237.d	279.d	324	350		
	19.0	129.d	142.d	170.d	202.d	237.d	276.d	309		
	20.0	111.d	122.d	146.d	173.d	203.d	237.d	274.d		
	21.0	96.d	105.d	126.d	149.d	176.d	205.d	237.d		
	22.0	83.d	92.d	110.d	130.d	153.d	178.d	206.d		
	23.0	73.d	80.d	96.d	114.d	134.d	156.d	180.d		
	24.0	64.d	71.d	85.d	100.d	118.d	137.d	159.d		
	25.0	57.d	62.d	75.d	89.d	104.d	121.d	140.d		
	26.0	51.d	56.d	66.d	79.d	92.d	108.d	125.d		
	27.0	45.d	50.d	59.d	70.d	83.d	96.d	111.d		
	28.0	40.d	44.d	53.d	63.d	74.d	86.d	100.d		
	29.0		40.d	48.d	57.d	67.d	78.d	90.d		
	30.0			43.d	51.d	60.d	70.d	81.d		

TABLE 3: CS120	LWC - #9 REI	BAR					IMPERIA	LUNITS
Base Steel Thickne	ss = 0.0435 in							
Rebar # 9					Light	Weight Co	ncrete = 1	10 lb/ft3
SLAB WEIGHT (psf)		38.6	40.9	45.5	50.0	54.6	59.2	63.8
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	SPAN (ft)	13.4	13.0	12.5	12.0	11.6	11.2	10.8
MAX. UNSHORED 2 SPAN (ft)		15.5	15.1	14.5	13.8	12.9	12.2	11.5
MAX. UNSHORED 3	SPAN (ft)	15.7	15.3	14.6	14.0	13.5	13.1	12.6
l _u in ⁴		25.2	27.7	33.4	39.8	47.0	55.1	64.2
l _e in ⁴		14.5	15.9	18.9	22.2	25.8	29.8	34.1
DEFL. PARAMETER	(LLDP)	312	343	411	487	573	668	773
DEFL. PARAMETER (SWDP)		1.17	1.12	1.04	0.959	0.887	0.820	0.758
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)	MAXIMUM SPECIFIED LOADS (psf)						
To be established	14.0	316.d	347.d	412	455	498	540	583
by the designer.	15.0	257.d	282.d	338.d	391	428	465	502
	16.0	212.d	233.d	279.d	331.d	371	403	435
	17.0	176.d	194.d	232.d	276.d	324.d	352	380
	18.0	149.d	163.d	196.d	232.d	273.d	309	334
	19.0	126.d	139.d	167.d	197.d	232.d	270.d	295
	20.0	108.d	119.d	143.d	169.d	199.d	232.d	261
	21.0	94.d	103.d	123.d	146.d	172.d	200.d	232.0
	22.0	81.d	90.d	107.d	127.d	149.d	174.d	202.0
	23.0	71.d	78.d	94.d	111.d	131.d	152.d	176.0
	24.0	63.d	69.d	83.d	98.d	115.d	134.d	155.d
	25.0	55.d	61.d	73.d	87.d	102.d	119.d	137.0
	26.0	49.d	54.d	65.d	77.d	91.d	106.d	122.d
	27.0	44.d	48.d	58.d	69.d	81.d	94.d	109.d
	28.0		43.d	52.d	62.d	72.d	84.d	98.d
	29.0			47.d	56.d	65.d	76.d	88.d
	30.0			42.d	50.d	59.d	69.d	80.d

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. I_u is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

UES

Revised: 06/02/2023

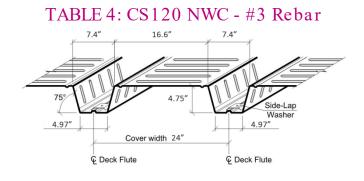

Valid Through: 06/30/2024

TABLE 4: CS120	ABLE 4: CS120 NWC - #3 REBAR IMPERIAL UNITS									
Base Steel Thickne	ss = 0.0375 in.									
Rebar # 3					Normal	Weight Co	oncrete = 1	45 lb/ft3		
SLAB WEIGHT (psf)		47.5	50.5	56.6	62.6	68.7	74.7	80.7		
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99		
MAX. UNSHORED 1	l SPAN (ft)	11.3	11.1	10.6	10.1	9.70	9.40	9.10		
MAX. UNSHORED 2	SPAN (ft)	11.1	10.6	9.70	9.00	8.30	7.80	7.30		
MAX. UNSHORED 3	SPAN (ft)	12.6	12.0	11.0	10.2	9.50	8.90	8.30		
l _u in ⁴		22.5	24.7	29.6	35.1	41.4	48.6	56.6		
l _e in ⁴		9.40	10.1	11.7	13.5	15.4	17.4	19.6		
DEFL. PARAMETER	(LLDP)	251	274	325	382	447	519	599		
DEFL. PARAMETER	(SWDP)	1.61	1.56	1.46	1.36	1.26	1.17	1.09		
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0		
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	sf)			
To be established by the designer.	14.0	110	117	131	144	158	172	186		
by the designer.	15.0	91	97	108	120	131	142	154		
	16.0	76	81	90	100	109	118	128		
	17.0	63	67	75	83	91	99	106		
	18.0	52	56	62	69	75	82	88		
	19.0	43	46	52	57	62	68	73		
	20.0			42	47	51	56	60		
	21.0					42	45	49		
	22.0									
	23.0									
	24.0									
	25.0									
	26.0									
	27.0									
	28.0									
	29.0									
	30.0									

TABLE 4: CS120	TABLE 4: CS120 NWC - #3 REBAR IMPERIAL UNITS								
Base Steel Thickne	ss = 0.0495 in								
Rebar # 3					Normal	Weight Co	oncrete = 1	45 lb/ft3	
SLAB WEIGHT (psf)		48.3	51.3	57.3	63.4	69.4	75.5	81.5	
CONCRETE VOLUM	E (yd³/100ft²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99	
MAX. UNSHORED 1	SPAN (ft)	13.0	12.6	12.1	11.5	11.1	10.7	10.4	
MAX. UNSHORED 2	SPAN (ft)	15.0	14.6	13.9	13.3	12.8	12.3	11.7	
MAX. UNSHORED 3	SPAN (ft)	15.1	14.8	14.1	13.5	12.9	12.5	12.1	
l _u in ⁴		23.3	25.6	30.6	36.3	42.7	50.0	58.2	
l _e in ⁴		10.7	11.5	13.4	15.4	17.7	20.1	22.6	
DEFL. PARAMETER	(LLDP)	267	292	346	407	475	551	636	
DEFL. PARAMETER	1.53	1.43	1.33	1.24	1.15	1.07			
SLAB THICKNESS (i	7.25	7.50	8.0	8.50	9.0	9.50	10.0		
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	;f)		
To be established by the designer.	14.0	142	152	170	189	208	226	245	
by the designer.	15.0	119	127	143	158	174	190	205	
	16.0	101	107	120	134	147	160	173	
	17.0	85	91	102	113	124	135	146	
	18.0	72	77	86	96	105	114	124	
	19.0	61	65	73	81	89	97	105	
	20.0	51	55	62	68	75	82	89	
	21.0	43	46	52	58	63	69	75	
	22.0			43	48	53	58	63	
	23.0				40	44	48	52	
	24.0							43	
	25.0								
	26.0								
	27.0								
	28.0								
	29.0								
	30.0								

TABLE 4: CS120 Base Steel Thickne							IMPERIA	L UNITS
Rebar # 3	ss = 0.0435 IN				Normal	Weight Co	oncrete = 1	45 lb/ft3
SLAB WEIGHT (psf)		47.9	50.9	57.0	63.0	69.0	75.1	81.1
CONCRETE VOLUM	E (yd3/100ft2)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	SPAN (ft)	12.2	11.9	11.3	10.9	10.4	10.1	9.70
MAX. UNSHORED 2	SPAN (ft)	14.1	13.6	12.5	11.5	10.7	10.0	9.40
MAX. UNSHORED 3 SPAN (ft)		14.2	13.9	13.2	12.7	12.2	11.4	10.7
l, in ⁴		22.9	25.1	30.0	35.6	42.0	49.2	57.4
l _z in ⁴		10.0	10.8	12.5	14.4	16.5	18.7	21.1
DEFL. PARAMETER	c DEFL. PARAMETER (LLDP)		283	335	394	460	534	617
DEFL. PARAMETER (SWDP)		1.60	1.55	1.45	1.35	1.25	1.16	1.08
SLAB THICKNESS (in.) 7.2			7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	sf)	
To be established by the designer.	14.0	126	134	151	167	183	199	215
by the designer.	15.0	105	112	126	139	153	166	180
	16.0	88	94	105	117	128	139	151
	17.0	74	79	88	98	107	117	126
	18.0	62	66	74	82	90	98	106
	19.0	52	56	62	69	76	82	89
	20.0	44	46	52	58	63	69	74
	21.0			43	48	53	57	62
	22.0					43	47	51
	23.0							41
	24.0							
	25.0							
	26.0							
	27.0							
	28.0							
	29.0							
	30.0							

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. Iu is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

UES

Revised: 06/02/2023

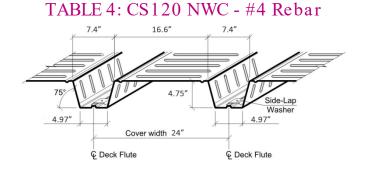

Valid Through: 06/30/2024

TABLE 4: CS120	TABLE 4: CS120 NWC - #4 REBAR IMPERIAL UNITS									
Base Steel Thickne	ss = 0.0375 in.									
Rebar # 4					Normal	Weight Co	ncrete = 1	45 lb/ft3		
SLAB WEIGHT (psf)		47.7	50.7	56.7	62.8	68.8	74.8	80.9		
CONCRETE VOLUM	E (yd³/100ft²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99		
MAX. UNSHORED 1	. SPAN (ft)	11.3	11.0	10.5	10.1	9.70	9.40	9.10		
MAX. UNSHORED 2	SPAN (ft)	11.1	10.6	9.70	9.00	8.30	7.80	7.30		
MAX. UNSHORED 3	SPAN (ft)	12.6	12.0	11.0	10.2	9.50	8.80	8.30		
l _u in ⁴		22.8	25.1	30.0	35.6	42.0	49.3	57.4		
I _c in ⁴		10.0	10.8	12.6	14.5	16.5	18.8	21.2		
DEFL. PARAMETER	(LLDP)	258	282	335	394	461	535	618		
DEFL. PARAMETER	(SWDP)	1.59	1.54	1.44	1.34	1.25	1.16	1.08		
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0		
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	sf)			
To be established by the designer.	14.0	134	142	158	174	191	207	223		
by the designer.	15.0	112	119	132	146	159	173	186		
	16.0	94	100	111	122	134	145	156		
	17.0	79	84	94	103	113	122	132		
	18.0	67	71	79	87	95	103	111		
	19.0	56	60	66	73	80	87	93		
	20.0	47	50	56	61	67	73	78		
	21.0		42	47	51	56	61	65		
	22.0				43	46	50	54		
	23.0						41	44		
	24.0									
	25.0									
	26.0									
	27.0									
	28.0									
	29.0									
	30.0									

TABLE 4: CS120	NWC - #4 RE	BAR	-				IMPERIA	L UNITS
Base Steel Thickne	ss = 0.0495 in.							
Rebar # 4					Normal	Weight Co	oncrete = 1	45 lb/ft3
SLAB WEIGHT (psf)		48.4	51.4	57.5	63.5	69.6	75.6	81.6
CONCRETE VOLUM	E (yd³/100ft²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	. SPAN (ft)	12.9	12.6	12.0	11.5	11.1	10.7	10.3
MAX. UNSHORED 2	SPAN (ft)	15.0	14.6	13.9	13.3	12.8	12.3	11.7
MAX. UNSHORED 3 SPAN (ft)		15.1	14.7	14.1	13.5	12.9	12.5	12.1
l _u in ⁴	l, in⁴		25.9	31.0	36.8	43.3	50.7	59.0
I _c in⁴		11.3	12.2	14.2	16.4	18.8	21.4	24.2
DEFL. PARAMETER (LLDP)		274	300	355	418	488	567	654
DEFL. PARAMETER (SWDP) 1.56			1.51	1.42	1.32	1.23	1.14	1.06
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	sf)	
To be established	14.0	166	176	197	218	239	260	281
by the designer.	15.0	140	149	166	184	202	220	237
	16.0	118	126	141	156	171	186	201
	17.0	101	107	120	133	146	158	171
	18.0	86	91	102	113	124	135	146
	19.0	73	78	87	97	106	115	125
	20.0	63	67	75	83	91	99	107
	21.0	53	57	64	71	77	84	91
	22.0	45	48	54	60	66	72	78
	23.0		41	46	51	56	61	66
	24.0				43	47	51	55
	25.0						43	46
	26.0							
	27.0							
	28.0							
	29.0							
	30.0							

TABLE 4: CS120							IMPERIA	
Rebar # 4	35 - 0.0455 III.				Normal	Weight Co	oncrete = 1	45 lb/ft
SLAB WEIGHT (psf)		48.0	51.1	57.1	63.1	69.2	75.2	81.3
CONCRETE VOLUM	E (vd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1		12.2	11.9	11.3	10.9	10.4	10.1	9.70
MAX. UNSHORED 2	SPAN (ft)	14.1	13.6	12.4	11.5	10.7	10.0	9.40
MAX. UNSHORED 3	SPAN (ft)	14.2	13.9	13.2	12.7	12.1	11.4	10.7
L in ⁴		23.2	25.5	30.5	36.2	42.6	49.9	58.2
l, in ⁴		10.6	11.5	13.3	15.4	17.6	20.0	22.6
DEFL. PARAMETER	(LLDP)	266	290	344	405	474	550	635
DEFL. PARAMETER	(SWDP)	1.58	1.53	1.43	1.33	1.24	1.15	1.07
SLAB THICKNESS (i	7.25	7.50	8.0	8.50	9.0	9.50	10.0	
SHORING	SPAN (ft)	MAXIMUM SPECIFIED LOADS (psf)						
To be established	14.0	150	159	178	196	215	234	252
by the designer.	15.0	126	134	149	165	181	196	212
	16.0	106	113	126	139	153	166	179
	17.0	90	96	107	118	129	140	152
	18.0	76	81	91	100	110	119	129
	19.0	65	69	77	85	93	101	109
	20.0	55	58	65	72	79	86	93
	21.0	47	49	55	61	67	73	78
	22.0		42	47	51	56	61	66
	23.0				43	47	51	55
	24.0						42	46
	25.0							
	26.0							
	27.0							
	28.0							
	29.0							
	30.0							

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. I_u is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

UES

Revised: 06/02/2023

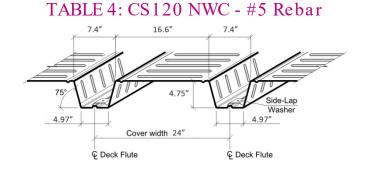

Valid Through: 06/30/2024

TABLE 4: CS120	NWC - #5 RE	BAR				I	IMPERIA	LUNITS
Base Steel Thickne	ss = 0.0375 in.							
Rebar # 5					Normal	Weight Co	ncrete = 1	45 lb/ft3
SLAB WEIGHT (psf)		47.8	50.9	56.9	62.9	69.0	75.0	81.1
CONCRETE VOLUM	E (yd³/100ft²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	. SPAN (ft)	11.3	11.0	10.5	10.1	9.70	9.40	9.10
MAX. UNSHORED 2	SPAN (ft)	11.0	10.5	9.70	8.90	8.30	7.80	7.30
MAX. UNSHORED 3	SPAN (ft)	12.5	12.0	11.0	10.2	9.50	8.80	8.30
l _u in ⁴		23.2	25.5	30.5	36.2	42.7	50.1	58.4
l _e in ⁴		10.7	11.6	13.5	15.7	18.0	20.4	23.1
DEFL. PARAMETER (LLDP)		267	292	347	408	478	555	641
DEFL. PARAMETER (SWDP) 1.58			1.52	1.42	1.33	1.23	1.14	1.06
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	9.0	9.50	10.0	
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	f)	
To be established by the designer.	14.0	163	173	192	212	231	251	270
by the designer.	15.0	138	146	162	178	195	211	227
	16.0	117	123	137	151	165	179	192
	17.0	99	105	117	128	140	152	163
	18.0	85	90	100	109	119	129	139
	19.0	72	76	85	93	102	110	119
	20.0	62	65	72	80	87	94	101
	21.0	53	56	62	68	74	80	86
	22.0	45	47	53	58	63	68	73
	23.0		40	44	49	53	57	62
	24.0				41	45	48	52
	25.0							43
	26.0							
	27.0							
	28.0							
	29.0							
	30.0							

TABLE 4: CS120	NWC - #5 RE	BAR					IMPERIA	L UNITS
Base Steel Thickne	ss = 0.0495 in							
Rebar # 5					Normal	Weight Co	oncrete = 1	45 lb/ft3
SLAB WEIGHT (psf)		48.6	51.6	57.7	63.7	69.8	75.8	81.8
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	L SPAN (ft)	12.9	12.6	12.0	11.5	11.1	10.7	10.3
MAX. UNSHORED 2	2 SPAN (ft)	14.9	14.6	13.9	13.3	12.8	12.3	11.6
MAX. UNSHORED 3 SPAN (ft)		15.1	14.7	14.0	13.5	12.9	12.5	12.1
lj in4		24.0	26.3	31.5	37.4	44.0	51.5	60.0
I _c in ⁴		11.9	12.9	15.1	17.5	20.1	22.9	26.0
DEFL. PARAMETER (LLDP) 28			309	366	431	504	586	676
DEFL. PARAMETER	1.50	1.40	1.30	1.21	1.12	1.04		
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	if)	
To be established by the designer.	14.0	194	207	231	255	279	303	328
by the designer.	15.0	165	175	195	216	236	257	277
	16.0	140	149	167	184	201	219	236
	17.0	120	128	143	158	173	187	202
	18.0	103	110	122	135	148	161	174
	19.0	89	94	106	117	128	139	150
	20.0	77	81	91	101	110	120	129
	21.0	66	70	79	87	95	103	112
	22.0	57	61	68	75	82	89	96
	23.0	49	52	58	64	71	77	83
	24.0	42	45	50	55	60	66	71
	25.0			43	47	52	56	61
	26.0					44	48	51
	27.0						40	43
	28.0							
	29.0							
	30.0							

TABLE 4: CS120	NWC - #5 RE	BAR					IMPERIA	L UNITS
Base Steel Thickne	ss = 0.0435 in.							
Rebar # 5					Normal	Weight Co	ncrete = 1	45 lb/ft3
SLAB WEIGHT (psf)		48.2	51.2	57.3	63.3	69.4	75.4	81.5
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	SPAN (ft)	12.2	11.9	11.3	10.8	10.4	10.1	9.70
MAX. UNSHORED 2	2 SPAN (ft)	14.1	13.5	12.4	11.5	10.7	10.0	9.40
MAX. UNSHORED 3	SPAN (ft)	14.2	13.9	13.2	12.7	12.1	11.3	10.6
l _u in ⁴		23.5	25.8	31.0	36.8	43.3	50.8	59.1
l _e in ⁴		11.3	12.2	14.3	16.5	19.0	21.6	24.5
DEFL. PARAMETER (LLDP)		274	300	356	419	490	569	658
DEFL. PARAMETER (SWDP)		1.56	1.51	1.41	1.31	1.22	1.13	1.05
SLAB THICKNESS (i	n.)	7.25	25 7.50 8.0 8.50 9.0 9.50					
					SPECIFIED	LOADS (ps	if)	
To be established	14.0	179	190	212	234	255	277	299
by the designer.	15.0	151	160	179	197	216	234	253
	16.0	129	136	152	168	183	199	215
	17.0	110	116	130	143	156	170	183
	18.0	94	100	111	122	134	145	157
	19.0	81	86	95	105	115	125	134
	20.0	69	73	82	90	99	107	115
	21.0	59	63	70	77	85	92	99
	22.0	51	54	60	66	72	79	85
	23.0	44	46	51	57	62	67	72
	24.0			44	48	53	57	61
	25.0				41	44	48	52
	26.0						40	43
	27.0							
	28.0							
	29.0							
	30.0							

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. I_u is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

UES

Revised: 06/02/2023

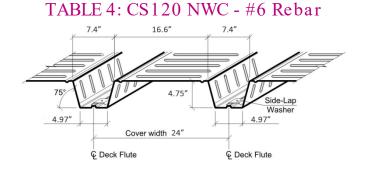

Valid Through: 06/30/2024

TABLE 4: CS120	NWC - #6 RE	BAR					IMPERIA	L UNITS
Base Steel Thickne	ss = 0.0375 in.							
Rebar # 6				_	Normal	Weight Co	ncrete = 1	45 lb/ft3
SLAB WEIGHT (psf)		48.1	51.1	57.1	63.2	69.2	75.3	81.3
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED	L SPAN (ft)	11.3	11.0	10.5	10.1	9.70	9.40	9.10
MAX. UNSHORED 2	2 SPAN (ft)	11.0	10.5	9.70	8.90	8.30	7.80	7.30
MAX. UNSHORED 3	SPAN (ft)	12.5	12.0	11.0	10.1	9.40	8.80	8.30
l₀in⁴		23.6	25.9	31.1	36.9	43.6	51.1	59.5
l _e in ⁴		11.5	12.5	14.6	17.0	19.5	22.3	25.3
DEFL. PARAMETER	(LLDP)	276	302	360	424	497	577	667
DEFL. PARAMETER	(SWDP)	1.56	1.50	1.40	1.31	1.21	1.12	1.04
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)	MAXIMUM SPECIFIED LOADS (psf)						
To be established by the designer.	14.0	198	210	233	256	279	303	326
by the designer.	15.0	168	178	197	217	237	256	276
	16.0	143	151	168	185	202	218	235
	17.0	123	130	144	158	173	187	201
	18.0	106	112	124	136	148	161	173
	19.0	91	96	107	117	128	139	149
	20.0	79	83	92	101	110	119	129
	21.0	68	72	80	87	95	103	111
	22.0	59	62	69	76	82	89	96
	23.0	51	54	59	65	71	77	82
	24.0	44	46	51	56	61	66	71
	25.0			44	48	52	56	60
	26.0				41	44	48	51
	27.0						40	43
	28.0							
	29.0							
	30.0							

TABLE 4: CS120	NWC - #6 RE	BAR					IMPERIA	L UNITS
Base Steel Thickne	ss = 0.0495 in.							
Rebar # 6					Normal	Weight Co	ncrete = 1	45 lb/ft3
SLAB WEIGHT (psf)		48.8	51.9	57.9	63.9	70.0	76.0	82.1
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	l SPAN (ft)	12.9	12.6	12.0	11.5	11.1	10.7	10.3
MAX. UNSHORED 2	2 SPAN (ft)	14.9	14.5	13.9	13.3	12.8	12.3	11.6
MAX. UNSHORED 3	3 SPAN (ft)	15.1	14.7	14.0	13.4	12.9	12.5	12.0
l, in⁴		24.3	26.7	32.0	38.0	44.8	52.5	61.1
l _e in ⁴		12.7	13.8	16.1	18.8	21.6	24.7	28.1
DEFL. PARAMETER (LLDP)		291	319	379	447	523	607	701
DEFL. PARAMETER	(SWDP)	1.53	1.48	1.38	1.28	1.19	1.11	1.03
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (p	sf)	
To be established	14.0	228	242	270	298	326	355	383
by the designer.	15.0	194	206	230	254	278	301	325
	16.0	166	176	197	217	238	258	279
	17.0	143	152	169	187	204	222	240
	18.0	124	131	146	162	177	192	207
	19.0	107	114	127	140	153	166	180
	20.0	93	99	110	122	133	145	156
	21.0	81	86	96	106	116	126	136
	22.0	71	75	84	92	101	110	118
	23.0	61	65	73	80	88	95	103
	24.0	53	57	63	70	76	83	90
	25.0	46	49	55	61	66	72	78
	26.0	40	43	48	52	57	62	67
	27.0			41	45	49	54	58
	28.0					42	46	49
	29.0							42

TABLE 4: CS120 Base Steel Thickne							IMPERIA	
Rebar # 6	00-010-05 mi				Normal	Weight Co	oncrete = 1	45 lb/ft
SLAB WEIGHT (psf)		48.5	51.5	57.5	63.6	69.6	75.6	81.7
CONCRETE VOLUM	E (yd3/100ft2)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	SPAN (ft)	12.1	11.8	11.3	10.8	10.4	10.1	9.70
MAX. UNSHORED 2	SPAN (ft)	14.0	13.5	12.4	11.5	10.7	10.0	9.30
MAX. UNSHORED 3	SPAN (ft)	14.2	13.8	13.2	12.6	12.1	11.3	10.6
l, in⁴		23.9	26.3	31.5	37.4	44.1	51.7	60.2
- I _c in ⁴		12.0	13.1	15.3	17.8	20.5	23.5	26.6
DEFL. PARAMETER (LLDP)		283	310	369	435	509	591	683
DEFL. PARAMETER (SWDP)		1.55	1.49	1.39	1.30	1.20	1.12	1.03
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	sf)	
To be established by the designer.	14.0	213	226	252	277	303	329	354
by the designer.	15.0	181	192	214	235	257	279	301
	16.0	155	164	183	201	220	238	257
	17.0	133	141	157	173	189	205	221
	18.0	115	121	135	149	163	176	190
	19.0	99	105	117	129	141	153	164
	20.0	86	91	101	112	122	132	142
	21.0	75	79	88	97	106	115	123
	22.0	65	69	76	84	92	99	107
	23.0	56	59	66	73	79	86	93
	24.0	49	51	57	63	69	74	80
	25.0	42	44	49	54	59	64	69
	26.0			42	47	51	55	59
	27.0					43	47	50
	28.0							43
	29.0							
	30.0							

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. I_u is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

UES

Revised: 06/02/2023

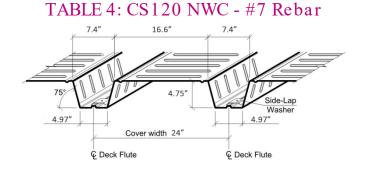

Valid Through: 06/30/2024

TABLE 4: CS120	NWC - #7 RE	BAR				l	IMPERIA	LUNITS
Base Steel Thickne	ss = 0.0375 in.							
Rebar # 7					Normal	Weight Co	oncrete = 1	45 lb/ft3
SLAB WEIGHT (psf)		48.3	51.4	57.4	63.5	69.5	75.5	81.6
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	. SPAN (ft)	11.3	11.0	10.5	10.1	9.70	9.40	9.10
MAX. UNSHORED 2	SPAN (ft)	11.0	10.5	9.60	8.90	8.30	7.70	7.30
MAX. UNSHORED 3	SPAN (ft)	12.5	11.9	10.9	10.1	9.40	8.80	8.30
l _u in⁴		24.0	26.4	31.7	37.7	44.5	52.1	60.7
I _c in ⁴		12.3	13.4	15.8	18.4	21.3	24.4	27.7
DEFL. PARAMETER	(LLDP)	286	313	374	441	517	602	696
DEFL. PARAMETER	(SWDP)	1.54	1.48	1.38	1.28	1.19	1.11	1.03
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)	MAXIMUM SPECIFIED LOADS (psf)						
To be established by the designer.	14.0	237	251	279	307	334	362	390
by the designer.	15.0	202	214	237	261	285	308	332
	16.0	173	183	203	224	244	264	284
	17.0	149	158	175	193	210	228	245
	18.0	129	137	152	167	182	197	212
	19.0	112	119	132	145	158	171	184
	20.0	98	103	115	126	137	149	160
	21.0	85	90	100	110	120	130	139
	22.0	74	79	87	96	104	113	122
	23.0	65	69	76	84	91	99	106
	24.0	57	60	66	73	79	86	92
	25.0	49	52	58	64	69	75	80
	26.0	43	45	50	55	60	65	70
	27.0			43	48	52	56	60
	28.0				41	45	48	52
	29.0						41	44
	30.0							

Base Steel Thickne	cc - 0 0495 in							
Rebar # 7	55 - 0.0495 III.				Marmal	Waisht Ca		AC 11. /64
				50.0		-	ncrete = 1	· ·
SLAB WEIGHT (psf)		49.1	52.1	58.2	64.2	70.3	76.3	82.3
CONCRETE VOLUM		1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1		12.9	12.6	12.0	11.5	11.1	10.7	10.3
MAX. UNSHORED 2		14.9	14.5	13.8	13.3	12.8	12.3	11.6
MAX. UNSHORED 3	SPAN (ft)	15.1	14.7	14.0	13.4	12.9	12.4	12.0
l _u in ⁴		24.7	27.2	32.6	38.8	45.7	53.5	62.3
l _e in ⁴		13.4	14.6	17.2	20.1	23.2	26.7	30.3
DEFL. PARAMETER (LLDP)		300	329	392	463	542	631	729
DEFL. PARAMETER	(SWDP)	1.51	1.46	1.36	1.26	1.17	1.09	1.01
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	sf)	
To be established	14.0	266	282	315	348	380	413	446
by the designer.	15.0	227	241	269	297	325	352	380
	16.0	195	207	231	255	279	303	327
	17.0	169	179	200	220	241	262	282
	18.0	143.d	155	173	191	209	227	245
	19.0	122.d	133.d	151	167	182	198	214
	20.0	104.d	114.d	132	146	160	173	187
	21.0	90.d	99.d	116	128	140	152	164
	22.0	78.d	86.d	102	112	123	133	144
	23.0	69.d	75.d	89	99	108	117	126
	24.0	60.d	66.d	78	87	95	103	111
	25.0	53.d	59.d	69	76	83	90	97
	26.0	47.d	52.d	60	67	73	79	85
	27.0	42.d	46.d	53	58	64	69	75
	28.0		41	46	51	56	60	65
	29.0		-14	-10	44	48	52	57
-	2.510						52	

TABLE 4: CS120							IMPERIA	LUNITS
Base Steel Thickne	ss = 0.0435 in.							
Rebar # 7				1	Normal	Weight Co	ncrete = 1	45 lb/ft3
SLAB WEIGHT (psf)		48.7	51.7	57.8	63.8	69.9	75.9	82.0
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	SPAN (ft)	12.1	11.8	11.3	10.8	10.4	10.0	9.70
MAX. UNSHORED 2	SPAN (ft)	14.0	13.4	12.4	11.4	10.6	9.90	9.30
MAX. UNSHORED 3	SPAN (ft)	14.2	13.8	13.2	12.6	12.1	11.3	10.6
l₀ in⁴		24.3	26.8	32.1	38.2	45.0	52.8	61.4
l _e in ⁴		12.8	14.0	16.5	19.2	22.2	25.5	29.0
DEFL. PARAMETER	(LLDP)	292	321	382	451	529	615	711
DEFL. PARAMETER	(SWDP)	1.53	1.48	1.37	1.28	1.18	1.10	1.02
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)		N	IAXIMUM	SPECIFIED	LOADS (ps	if)	
To be established by the designer.	14.0	252	267	297	327	358	388	418
by the designer.	15.0	215	227	253	279	305	331	356
	16.0	184	195	217	239	262	284	306
	17.0	159	168	188	207	226	245	264
	18.0	138	146	163	179	196	212	229
	19.0	118.d	127	141	156	170	185	199
	20.0	102.d	111	123	136	149	161	174
	21.0	88.d	96.d	108	119	130	141	152
	22.0	76.d	84.d	95	104	114	123	133
	23.0	67.d	73.d	83	91	100	108	116
	24.0	59.d	64.d	73	80	87	94	102
	25.0	52.d	57.d	63	70	76	83	89
	26.0	46.d	50	55	61	66	72	78
	27.0	41	43	48	53	58	63	67
	28.0			42	46	50	54	58
	29.0					43	47	50
	30.0							43

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. $I_{u}\xspace$ is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

UES

Revised: 06/02/2023

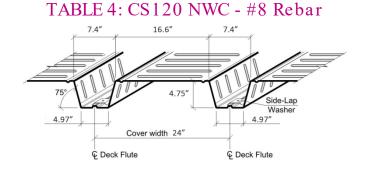

Valid Through: 06/30/2024

TABLE 4: CS120	NWC - #8 RE	BAR					IMPERIA	LUNITS
Base Steel Thickne	ss = 0.0375 in							
Rebar # 8					Normal	Weight Co	oncrete = 1	45 lb/ft3
SLAB WEIGHT (psf)		48.7	51.7	57.7	63.8	69.8	75.8	81.9
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1	. SPAN (ft)	11.3	11.0	10.5	10.1	9.70	9.30	9.00
MAX. UNSHORED 2	SPAN (ft)	10.9	10.5	9.60	8.90	8.30	7.70	7.20
MAX. UNSHORED 3	SPAN (ft)	12.4	11.9	10.9	10.1	9.40	8.80	8.20
lj in4		24.4	26.9	32.3	38.5	45.4	53.3	62.1
l _e in⁴		13.2	14.4	17.0	19.9	23.1	26.5	30.2
DEFL. PARAMETER	(LLDP)	296	325	388	459	539	628	726
DEFL. PARAMETER	(SWDP)	1.52	1.47	1.36	1.26	1.17	1.09	1.01
SLAB THICKNESS (i	n.)	7.25 7.50 8.0 8.50 9.0 9.50 10						10.0
SHORING	SPAN (ft)	MAXIMUM SPECIFIED LOADS (psf)						
To be established by the designer.	14.0	280	296	330	363	396	429	462
by the designer.	15.0	239	253	281	310	338	366	395
	16.0	200.d	218	242	266	291	315	339
	17.0	167.d	184.d	210	231	252	273	294
	18.0	141.d	155.d	182	201	219	237	255
	19.0	120.d	131.d	157.d	175	191	207	223
	20.0	103.d	113.d	135.d	153	167	181	195
	21.0	89.d	97.d	116.d	135	147	159	171
	22.0	77.d	85.d	101.d	118	129	140	151
	23.0	67.d	74.d	89.d	104	114	123	133
	24.0	59.d	65.d	78.d	92	100	108	117
	25.0	53.d	58.d	69.d	81	88	95	103
	26.0	47.d	51.d	61.d	71	78	84	90
	27.0	42.d	46.d	55.d	63	68	74	79
	28.0		41.d	49.d	55	60	65	69
	29.0			44	48	52	56	61
	30.0				42	45	49	53

TABLE 4: CS120	NWC - #8 RE	BAR					IMPERIA	LUNITS	
Base Steel Thickne	ss = 0.0495 in								
Rebar # 8					Normal	Weight Co	oncrete = 1	45 lb/ft3	
SLAB WEIGHT (psf)		49.4	52.4	58.5	64.5	70.6	76.6	82.7	
CONCRETE VOLUM	E (yd3/100ft2)	1.15	1.22	1.38	1.53	1.69	1.84	1.99	
MAX. UNSHORED 1	L SPAN (ft)	12.9	12.5	12.0	11.5	11.0	10.7	10.3	
MAX. UNSHORED 2	2 SPAN (ft)	14.9	14.5	13.8	13.2	12.7	12.3	11.6	
MAX. UNSHORED 3 SPAN (ft)		15.0	14.7	14.0	13.4	12.9	12.4	12.0	
l, in ⁴		25.1	27.7	33.2	39.5	46.6	54.6	63.6	
l _e in ⁴		14.2	15.5	18.4	21.5	25.0	28.7	32.8	
DEFL. PARAMETER (LLDP) 31			340	406	480	563	656	758	
DEFL. PARAMETER	AMETER (SWDP) 1.50 1.45 1.34 1.25 1.15 1.07						0.992		
SLAB THICKNESS (i	n.)	7.25	7.50 8.0 8.50 9.0 9.50 10.0						
SHORING	SPAN (ft)	MAXIMUM SPECIFIED LOADS (psf)							
To be established by the designer.	14.0	308	327	365	402	440	478	516	
by the designer.	15.0	255.d	279	312	344	377	409	442	
	16.0	210.d	231.d	269	297	325	353	381	
	17.0	175.d	192.d	230.d	257	282	306	330	
	18.0	148.d	162.d	193.d	224	246	267	288	
	19.0	125.d	138.d	164.d	195.d	215	233	252	
	20.0	108.d	118.d	141.d	167.d	189	205	221	
	21.0	93.d	102.d	122.d	144.d	166	181	195	
	22.0	81.d	89.d	106.d	125.d	147	160	172	
	23.0	71.d	78.d	93.d	110.d	129.d	141	152	
	24.0	62.d	68.d	82.d	97.d	113.d	125	135	
	25.0	55.d	60.d	72.d	85.d	100.d	111	119	
	26.0	49.d	54.d	64.d	76.d	89.d	98	106	
	27.0	44.d	48.d	57.d	68.d	79.d	87	94	
	28.0		43.d	51.d	61.d	70	77	83	
	29.0			46.d	55.d	62	67	73	
	30.0			42.d	49.d	55	59	64	

TABLE 4: CS120							IMPERIAL	. UNITS
Base Steel Thickne	ss = 0.0435 in.							
Rebar # 8							oncrete = 14	
SLAB WEIGHT (psf)		49.0	52.1	58.1	64.1	70.2	76.2	82.3
CONCRETE VOLUM		1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1		12.1	11.8	11.3	10.8	10.4	10.0	9.70
MAX. UNSHORED 2		14.0	13.4	12.3	11.4	10.6	9.90	9.30
MAX. UNSHORED 3	SPAN (ft)	14.1	13.8	13.2	12.6	12.0	11.3	10.6
l _u in⁴		24.7	27.2	32.7	39.0	46.0	53.9	62.8
l _c in ⁴		13.7	14.9	17.7	20.7	24.0	27.6	31.4
DEFL. PARAMETER	(LLDP)	302	332	396	469	550	641	741
DEFL. PARAMETER	(SWDP)	1.51	1.46	1.35	1.26	1.16	1.08	1.00
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING To be established	SPAN (ft)	MAXIMUM SPECIFIED LOADS (psf)						
to be established by the designer.	14.0	294	312	347	383	418	454	489
by the designed	15.0	249.d	266	297	327	358	388	418
	16.0	205.d	225.d	256	282	308	334	360
	17.0	171.d	188.d	221	244	267	289	312
	18.0	144.d	158.d	189.d	213	232	252	272
	19.0	122.d	134.d	161.d	186	203	220	237
	20.0	105.d	115.d	138.d	163.d	178	193	208
	21.0	91.d	99.d	119.d	141.d	157	170	183
	22.0	79.d	87.d	103.d	122.d	138	150	161
	23.0	69.d	76.d	91.d	107.d	122	132	142
	24.0	61.d	67.d	80.d	94.d	108	117	126
	25.0	54.d	59.d	70.d	83.d	95	103	111
	26.0	48.d	52.d	63.d	74.d	84	91	98
	27.0	43.d	47.d	56.d	66.d	74	80	86
	28.0		42.d	50.d	59.d	65	71	76
	29.0			45.d	52	57	62	67
	30.0			41.d	46	50	54	58

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. I_u is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

UES

Revised: 06/02/2023

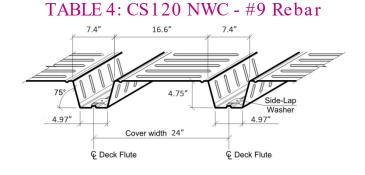

Valid Through: 06/30/2024

TABLE 4: CS120	NWC - #9 RE	BAR					IMPERIA	LUNITS	
Base Steel Thickne	ss = 0.0375 in								
Rebar # 9					Normal	Weight Co	ncrete = 1	45 lb/ft3	
SLAB WEIGHT (psf)		49.0	52.0	58.1	64.1	70.2	76.2	82.3	
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99	
MAX. UNSHORED 1	. SPAN (ft)	11.2	11.0	10.5	10.0	9.70	9.30	9.00	
MAX. UNSHORED 2	SPAN (ft)	10.9	10.4	9.60	8.80	8.20	7.70	7.20	
MAX. UNSHORED 3	SPAN (ft)	12.4	11.8	10.9	10.1	9.40	8.70	8.20	
l _u in ⁴		24.8	27.4	33.0	39.3	46.4	54.5	63.5	
l _e in ⁴		14.0	15.4	18.3	21.5	25.0	28.8	32.9	
DEFL. PARAMETER	(LLDP)	306	336	403	478	562	655	758	
DEFL. PARAMETER	(SWDP)	1.51	1.45	1.34	1.24	1.15	1.07	0.988	
SLAB THICKNESS (i	n.)	7.25	7.50	8.0	8.50	9.0	9.50	10.0	
SHORING	SPAN (ft)		MAXIMUM SPECIFIED LOADS (psf)						
To be established by the designer.	14.0	309.d	340.d	386	425	464	503	543	
by the designer.	15.0	252.d	277.d	330	364	397	431	465	
	16.0	207.d	228.d	273.d	314	343	372	401	
	17.0	173.d	190.d	228.d	270.d	298	323	348	
	18.0	146.d	160.d	192.d	228.d	260	282	304	
	19.0	124.d	136.d	163.d	194.d	228.d	247	266	
	20.0	106.d	117.d	140.d	166.d	195.d	217	234	
	21.0	92.d	101.d	121.d	143.d	169.d	192	207	
	22.0	80.d	88.d	105.d	125.d	147.d	170	183	
	23.0	70.d	77.d	92.d	109.d	128.d	150.d	162	
	24.0	61.d	68.d	81.d	96.d	113.d	132.d	144	
	25.0	54.d	60.d	72.d	85.d	100.d	116.d	128	
	26.0	48.d	53.d	64.d	76.d	89.d	104.d	114	
	27.0	43.d	47.d	57.d	67.d	79.d	92.d	101	
	28.0		43.d	51.d	60.d	71.d	83.d	89	
	29.0			46.d	54.d	64.d	73	79	
	30.0			41.d	49.d	58.d	65	70	

TABLE 4: CS120	NWC - #9 RE	BAR				l	IMPERIA	LUNITS	
Base Steel Thickne	ss = 0.0495 in								
Rebar # 9					Normal	Weight Co	oncrete = 1	45 lb/ft3	
SLAB WEIGHT (psf)		49.8	52.8	58.8	64.9	70.9	77.0	83.0	
CONCRETE VOLUM	E (yd ³ /100ft ²)	1.15	1.22	1.38	1.53	1.69	1.84	1.99	
MAX. UNSHORED 1	SPAN (ft)	12.8	12.5	12.0	11.5	11.0	10.6	10.3	
MAX. UNSHORED 2	2 SPAN (ft)	14.8	14.5	13.8	13.2	12.7	12.3	11.5	
MAX. UNSHORED 3	3 SPAN (ft)	15.0	14.6	14.0	13.4	12.9	12.4	12.0	
lj in ⁴		25.6	28.2	33.9	40.3	47.6	55.8	65.0	
l _c in ⁴		15.1	16.5	19.6	23.0	26.8	30.9	35.3	
DEFL. PARAMETER	320	351	421	498	585	682	789		
DEFL. PARAMETER	(SWDP)	1.49	1.43	1.32	1.23	1.14	1.05	0.974	
SLAB THICKNESS (i	n.)	7.25	5 7.50 8.0 8.50 9.0 9.50 10.0						
SHORING	SPAN (ft)	MAXIMUM SPECIFIED LOADS (psf)							
To be established by the designer.	14.0	323.d	356.d	419	463	507	551	595	
by the designer.	15.0	263.d	289.d	346.d	397	435	473	511	
	16.0	217.d	238.d	285.d	338.d	376	409	441	
	17.0	181.d	199.d	238.d	282.d	327	355	384	
	18.0	152.d	167.d	200.d	237.d	279.d	311	336	
	19.0	129.d	142.d	170.d	202.d	237.d	273	295	
	20.0	111.d	122.d	146.d	173.d	203.d	237.d	260	
	21.0	96.d	105.d	126.d	149.d	176.d	205.d	230	
	22.0	83.d	92.d	110.d	130.d	153.d	178.d	204	
	23.0	73.d	80.d	96.d	114.d	134.d	156.d	180.d	
	24.0	64.d	71.d	85.d	100.d	118.d	137.d	159.d	
	25.0	57.d	62.d	75.d	89.d	104.d	121.d	140.d	
	26.0	51.d	56.d	66.d	79.d	92.d	108.d	125.d	
	27.0	45.d	50.d	59.d	70.d	83.d	96.d	111.d	
	28.0	40.d	44.d	53.d	63.d	74.d	86.d	100.d	
	29.0		40.d	48.d	57.d	67.d	78.d	90.d	
	30.0			43.d	51.d	60.d	70.d	81	

TABLE 4: CS120	NWC - #9 RE	BAR					IMPERIA	L UNITS
Base Steel Thickne	ss = 0.0435 in							
Rebar # 9					Normal	Weight Co	ncrete = 1	45 lb/ft3
SLAB WEIGHT (psf)		49.4	52.4	58.5	64.5	70.6	76.6	82.6
CONCRETE VOLUME (yd³/100ft²)		1.15	1.22	1.38	1.53	1.69	1.84	1.99
MAX. UNSHORED 1 SPAN (ft)		12.1	11.8	11.2	10.8	10.4	10.0	9.70
MAX. UNSHORED 2 SPAN (ft)		14.0	13.3	12.3	11.4	10.6	9.90	9.30
MAX. UNSHORED 3 SPAN (ft)		14.1	13.8	13.1	12.6	12.0	11.2	10.5
l, in⁴		25.2	27.7	33.4	39.8	47.0	55.1	64.2
I _c in ⁴		14.5	15.9	18.9	22.2	25.8	29.8	34.1
DEFL. PARAMETER (LLDP)		312	343	411	487	573	668	773
DEFL. PARAMETER (SWDP)		1.50	1.44	1.34	1.24	1.15	1.06	0.982
SLAB THICKNESS (in.)		7.25	7.50	8.0	8.50	9.0	9.50	10.0
SHORING	SPAN (ft)	MAXIMUM SPECIFIED LOADS (psf)						
To be established by the designer.	14.0	316.d	347.d	402	444	486	527	569
	15.0	257.d	282.d	338.d	381	416	452	488
	16.0	212.d	233.d	279.d	329	360	390	421
	17.0	176.d	194.d	232.d	276.d	312	339	366
	18.0	149.d	163.d	196.d	232.d	273.d	296	320
	19.0	126.d	139.d	167.d	197.d	232.d	260	281
	20.0	108.d	119.d	143.d	169.d	199.d	229	247
	21.0	94.d	103.d	123.d	146.d	172.d	200.d	219
	22.0	81.d	90.d	107.d	127.d	149.d	174.d	194
	23.0	71.d	78.d	94.d	111.d	131.d	152.d	172
	24.0	63.d	69.d	83.d	98.d	115.d	134.d	153
	25.0	55.d	61.d	73.d	87.d	102.d	119.d	136
	26.0	49.d	54.d	65.d	77.d	91.d	106.d	121
	27.0	44.d	48.d	58.d	69.d	81.d	94.d	108
	28.0		43.d	52.d	62.d	72.d	84.d	96
	29.0			47.d	56.d	65.d	76.d	85
	30.0			42.d	50.d	59.d	69.d	75

- 1. The "SLAB WEIGHT" is made up of the self-weight of the steel deck, the reinforcing bar, and the concrete slab, which has been accounted for in the strength values of the load table.
- 2. See maximum unshored span conditions above to establish the number of shores required.
- 3. "d" next to values in the Table indicates instantaneous deflection controls due to superimposed loads.
- 4. "SLAB THICKNESS" is measured from the top of the concrete to the bottom of the steel deck.
- 5. I_u is the uncracked moment if inertia based on equivalent steel
- 6. Ic is the cracked moment if inertia based on equivalent steel
- 7. An explanation of deflection parameters SLDP & SWDP is in the example on page 2.

Originally Issued: 06/10/2016

Revised: 06/02/2023

Valid Through: 06/30/2024

CALIFORNIA SUPPLEMENT

BAILEY METAL PRODUCTS LIMITED 1 Caldari Road Concord, ON L4K 3Z9 CANADA (905) 738-9267 www.bmp-group.com

COMSLAB FLOOR SYSTEM

CSI Sections: 05 00 00 Metals 05 31 00 Steel Decking 05 31 13 Steel Floor Decking

1.0 RECOGNITION

The ComSlab Floor System evaluated in IAPMO UES ER-277 and this supplement, complies with the following codes, subject to the additional requirements in Section 2.0 of this supplement:

• 2019 California Building Code (CBC), Title 24 Part 2.

2.0 LIMITATIONS

Use of the ComSlab Floor System recognized in ER-277 and this report supplement is subject to the following limitations:

2.1 The design and installation of the ComSlab Floor System shall be in accordance with the 2018 International Building Code, as noted in ER-277.

2.2 Special Inspections are required in accordance with CBC Sections 1705.2 and 1705A.2, Steel Construction, and Sections 1705.3 and 1705A.3, Concrete Construction.

2.3 Structural Observation is required in accordance with CBC Sections 1704.6 and 1704A.6.

2.4 Concrete materials shall comply with CBC Sections 1909.2 and 1903A, and 2016 CBC Section 1910A.

2.5 This supplement expires concurrently with ER-277.

For additional information about this evaluation report please visit www.uniform-es.org or email us at info@uniform-es.org

Originally Issued: 06/10/2016

Revised: 06/02/2023

Valid Through: 06/30/2024

FLORIDA SUPPLEMENT

BAILEY METAL PRODUCTS LIMITED 1 Caldari Road Concord, ON L4K 3Z9 CANADA (905) 738-9267 www.bmp-group.com

COMSLAB FLOOR SYSTEM

CSI Sections: 05 00 00 Metals 05 31 00 Steel Decking 05 31 13 Steel Floor Decking

1.0 RECOGNITION

The ComSlab Floor System evaluated in IAPMO UES ER-277 and this supplement, complies with the following code, subject to the additional requirements in Section 2.0 of this supplement:

• 2020 Florida Building Code, Building (FBC, Building)

2.0 LIMITATIONS

Use of the ComSlab Floor System recognized in ER-277 and this report supplement is subject to the following limitations:

2.1 The design and installation of the ComSlab Floor System shall be in accordance with the 2018 International Building Code, as noted in ER-277.

2.2 Special Inspections are required for threshold buildings in accordance with FBC, Building Section 110.8.

2.3 Installations in high-velocity hurricane zones (HVHZ) are subject to applicable provisions in the FBC, Building Section 2222.

2.4 Verification shall be provided that a quality assurance agency audits the manufacturer's quality assurance program and audits the production quality of products, in accordance with Section (5)(d) of Florida Rule 61G20-3.008. The quality assurance agency shall be approved by the Commission (or the building official when the report holder does not possess an approval from the Commission).

2.5 This supplement expires concurrently with ER-277.

For additional information about this evaluation report please visit www.uniform-es.org or email us at info@uniform-es.org

Originally Issued: 06/10/2016

Revised: 06/02/2023

Valid Through: 06/30/2024

CITY OF NEW YORK SUPPLEMENT

BAILEY METAL PRODUCTS LIMITED 1 Caldari Road Concord, ON L4K 3Z9 Canada (905) 738-9267 www.bmp-group.com

COMSLAB FLOOR SYSTEM

CSI Sections: 05 00 00 Metals 05 31 00 Steel Decking 05 31 13 Steel Floor Decking

1.0 RECOGNITION

The ComSlab Floor System evaluated in IAPMO UES ER-277 and this supplement, complies with the following code, subject to the additional requirements in Section 2.0 of this supplement:

 2014 New York City Building Code (NYCBC) Section 2209.2

2.0 LIMITATIONS

Use of the ComSlab Floor System recognized in ER-277 and this report supplement is subject to the following limitations:

2.1 The design, installation, and inspection of the ComSlab Floor System shall be in accordance with the 2012 International Building Code, as noted in ER-277.

2.2 Special Inspections are required in accordance with NYCBC Sections 1704.1, Sections 1704.3, Steel Construction, and 1704.4 Concrete Construction.

- 2.3 This supplement expires concurrently with ER-277.
 - For additional information about this evaluation report please visit www.uniform-es.org or email us at info@uniform-es.org

Originally Issued: 06/10/2016

Revised: 06/02/2023

Valid Through: 06/30/2024

CITY OF CHICAGO SUPPLEMENT

BAILEY METAL PRODUCTS LIMITED 1 Caldari Road Concord, ON L4K 3Z9 Canada (905) 738-9267 www.bmp-group.com

COMSLAB FLOOR SYSTEM

CSI Sections: 05 00 00 Metals 05 31 00 Steel Decking 05 31 13 Steel Floor Decking

1.0 RECOGNITION

The ComSlab Floor System evaluated in IAPMO UES ER-277 and this supplement, complies with the following code, subject to the additional requirements in Section 2.0 of this supplement:

• 2019 Chicago Building Code (Title 14B)

2.0 LIMITATIONS

Use of the ComSlab Floor System recognized in ER-277 and this report supplement is subject to the following limitations:

2.1 The design, installation, and inspection of the ComSlab Floor System shall be in accordance with the 2018 International Building Code, as noted in ER-277.

2.2 A statement of special inspections shall be prepared by the registered design professional in responsible charge and submitted to the building official as set forth in Sections 1704.2.3 and 1704.3 of the Chicago Building Code.

2.3 Structural observations shall be provided where required by Sections 1706.1 or 1706.2 of the Chicago Building Code.

2.4 This supplement expires concurrently with ER-277.

For additional information about this evaluation report please visit www.uniform-es.org or email us at info@uniform-es.org